高二上冊數(shù)學預習資料(2)
高二上冊數(shù)學預習資料
高二上冊數(shù)學預習資料第三部分
八、《復數(shù)》
虛數(shù)單位i一出,數(shù)集擴大到復數(shù)。一個復數(shù)一對數(shù),橫縱坐標實虛部。
對應復平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。
箭桿的長即是模,常將數(shù)形來結(jié)合。代數(shù)幾何三角式,相互轉(zhuǎn)化試一試。
代數(shù)運算的實質(zhì),有i多項式運算。i的正整數(shù)次慕,四個數(shù)值周期現(xiàn)。
一些重要的結(jié)論,熟記巧用得結(jié)果。虛實互化本領大,復數(shù)相等來轉(zhuǎn)化。
利用方程思想解,注意整體代換術。幾何運算圖上看,加法平行四邊形,
減法三角法則判;乘法除法的運算,逆向順向做旋轉(zhuǎn),伸縮全年模長短。
三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。
輻角運算很奇特,和差是由積商得。四條性質(zhì)離不得,相等和模與共軛,
兩個不會為實數(shù),比較大小要不得。復數(shù)實數(shù)很密切,須注意本質(zhì)區(qū)別。
平方關系:
sin^2α+cos^2α=1
1+tan^2α=sec^2α
1+cot^2α=csc^2α
·積的關系:
sinα=tanα×cosα
cosα=cotα×sinα
tanα=sinα×secα
cotα=cosα×cscα
secα=tanα×cscα
cscα=secα×cotα
·倒數(shù)關系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
商的關系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
直角三角形ABC中,
角A的正弦值就等于角A的對邊比斜邊,
余弦等于角A的鄰邊比斜邊
正切等于對邊比鄰邊,
·[1]三角函數(shù)恒等變形公式
·兩角和與差的三角函數(shù):
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·三角和的三角函數(shù):
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
高二上冊數(shù)學預習資料相關文章: