可燃冰怎么形成的如何鑒別可燃冰
可燃冰怎么形成的如何鑒別可燃冰
可燃冰由天然氣與水在高壓低溫條件下形成的類冰狀的結(jié)晶物質(zhì),其形成的過程大致是怎樣的,以下是學(xué)習(xí)啦小編為大家整理可燃冰怎么形成的答案,希望對你有幫助!
可燃冰的形成
海洋生成
有兩種不同種類的海洋存量。最常見的絕大多數(shù)(> 99%)都是甲烷包覆于結(jié)構(gòu)一型的包合物,而且一般都在沉淀物的深處才能發(fā)現(xiàn)。在此結(jié)構(gòu)下,甲烷中的碳同位素較輕(δ13C < -60‰),因此指出其是微生物由CO2的氧化還原作用而來。這些位于深處礦床的包合物,一般認(rèn)為應(yīng)該是從微生物產(chǎn)生的甲烷環(huán)境中原處形成,因為這些包合物與四周溶解的甲烷其δ13C值是相似的。
這些礦床坐落于中深度范圍的區(qū)域內(nèi),大約300-500m厚的沉積物中(稱作氣水化合物穩(wěn)定帶(GasHydrate Stability Zone)或 GHSZ),且該處共存著溶于孔隙水的甲烷。在這區(qū)域之下,甲烷只會以溶解型態(tài)存在,并隨著沉積物表層的距離而濃度逐漸遞減。而在這之上,甲烷是氣態(tài)的。在大西洋大陸脊的布雷克海脊,GHSZ在190m的深度開始延伸至450m處,并于該點達(dá)到氣態(tài)的相平衡。測量結(jié)果指出,甲烷在GHSZ的體積占了0-9% ,而在氣態(tài)區(qū)域占了大約12%的體積。
在接近沉積物表層所發(fā)現(xiàn)較少見的第二種結(jié)構(gòu)中,某些樣本有較高比例的碳?xì)浠衔镩L鏈(<99% 甲烷)包含于結(jié)構(gòu)二型的包合物中。其甲烷的碳同位素較重(δ13C 為 -29 至 -57 ‰),據(jù)推斷是由沉積物深處的有機物質(zhì),經(jīng)熱分解后形成甲烷而往上遷移而成。此種類型的礦床在墨西哥灣和里海等海域出現(xiàn)。
某些礦床具有介于微生物生成和熱生成類型的特性,因此預(yù)估會出現(xiàn)兩種混合的型態(tài)。
氣水化合物的甲烷主要由缺氧環(huán)境下有機物質(zhì)的細(xì)菌分解。在沉積物最上方幾厘米的有機物質(zhì)會先被好氧細(xì)菌所分解,產(chǎn)生CO2,并從沉積物中釋放進(jìn)水團中。在此區(qū)域的好氧細(xì)菌活動中,硫酸鹽會被轉(zhuǎn)變成硫化物。若沉淀率很低(<1厘米/千年)、有機碳成分很低(<1%),且含氧量充足時,好氧細(xì)菌會耗光所有沉積物中的有機物質(zhì)。但該處的沉淀率和有機碳成分都很高,沉積物中的孔隙水僅在幾厘米深的地方是缺氧態(tài)的,而甲烷會經(jīng)由厭氧細(xì)菌產(chǎn)生。此類甲烷的生成是更為復(fù)雜的程序,需要各個種類的細(xì)菌活動、一個還原環(huán)境(Eh -350 to -450 mV),且環(huán)境pH 值需介于6至8之間。在某些海域(例如墨西哥灣)包合物中的甲烷至少會有部份是由有機物質(zhì)的熱分解所產(chǎn)生,但大多是從石油分解而成。包合物中的甲烷一般會具有細(xì)菌性的同位素特征,以及很高的 δ13C 值(-40 to -100‰),平均大約是-65‰。在固態(tài)包合物地帶的下方處,沉積物里的大量甲烷可能以氣泡的方式釋放出來。
在給定的地點內(nèi)判定該處是否含有包合物,大多可以透過觀測“海底仿擬反射”(BottomSimulatingReflector,或稱BSR)分布,以震測反射(seismicreflection)的方式來掃描洋底沉積物與包合物穩(wěn)定帶之間的接口處,因而可觀測出一般沉積物和那些蘊藏包合物沉積物之間的密度差異。
海洋生成的甲烷包合物,蘊藏量鮮為人知。自從1960至1970年代,包合物首次發(fā)現(xiàn)可能存在海洋中的那段時期,其預(yù)估的蘊藏量就每十年以數(shù)量級的概估速度遞減。曾經(jīng)預(yù)估過的蘊藏量(高達(dá)3×1018m³)是建構(gòu)在假設(shè)包合物非常稠密地散布在整片深海海床上。然而,隨著我們對包合物化學(xué)和沉積學(xué)等知識進(jìn)一步的了解,發(fā)現(xiàn)水合物只會在某個狹窄范圍內(nèi)(大陸棚)的深度下形成,以及某些地點的深度范圍內(nèi)才會存在(10-30%部分的 GHSZ 區(qū)),而且通常是在低濃度(體積的0.9-1.5%)的地點。最新的估計強制采用直接取樣的方式,指出全球含量介于 1×1015 和 5×1015 m³ 之間。這個預(yù)估結(jié)果,對應(yīng)出大約500至2500個十億噸單位的碳 (Gt C),比預(yù)估所有礦物燃料的5000GtC數(shù)量還少,但整體上卻超過所預(yù)估其他天然氣來源的約230Gt C。在北極圈的永凍地帶,其儲藏量預(yù)估可達(dá)約400Gt C,但在南極區(qū)域并未估出可能的蘊藏量。這些是很大的數(shù)字。相較于大氣中的總碳數(shù)也才大約700個Gt C。
這些近代的估計結(jié)果,與當(dāng)初人們以為包合物為礦物燃料來源時(MacDonald 1990,Kvenvolden 1998)所提出的10,000to11,000 Gt C (2×1016 m³),數(shù)量上明顯的要少。包合物藏量的縮減,并未使其失去經(jīng)濟價值,但縮減的整體含量和多數(shù)產(chǎn)地明顯過低的采集密度,的確指出僅限某些地區(qū)的包合物礦床才能提供經(jīng)濟上的實質(zhì)價值。
大陸生成
在大陸巖石內(nèi)的甲烷包合物會受限在深度800m以上的砂巖或粉沙巖巖床中。采樣結(jié)果指出,這些包合物以熱力或微生物分解氣體的混合方式形成,其中較重的碳?xì)浠衔镏蟛艜x擇性地被分解。這類的型態(tài)存在于阿拉斯加和西伯利亞。
儲量比地球上石油的總儲量還大幾百倍。這些可然冰都蘊藏在全球各地的450米深的海床上,表面看起來,很象干冰,實際卻能燃燒。在美東南沿海水下2700平方米面積的水化物中,含有足夠供應(yīng)美國70多年的可燃冰。其儲量預(yù)計是常規(guī)儲量的2.6倍,如果全部開發(fā)利用,可使用100年左右。中國地質(zhì)大學(xué)(武漢)和中南石油局第五物探大隊在藏北高原羌塘盆地開展的大規(guī)模地球物理勘探成果表明:繼塔里木盆地后,西藏地區(qū)很有可能成為中國21世紀(jì)第二個石油資源戰(zhàn)略接替區(qū)。
可燃冰的制備方法
天然氣水合物又稱可燃冰,具有非常高的使用價值,1m3可燃冰等于164m3的常規(guī)天然氣藏。據(jù)保守估算,世界上天然氣水合物所含的有機碳的總資源量,相當(dāng)于全球已知煤、石油和天然氣總量的2倍。特別是天然氣水合物的主要成分是甲烷,燃燒后幾乎沒有污染,是一種綠色的新型能源。從其儲量之大、分布范圍之廣和應(yīng)用前景之好來看,它是石油、天然氣、煤等傳統(tǒng)能源之后最佳的接替能源??扇急c燃了人類21世紀(jì)能源利用的希望之光。
天然氣水合物是水和天然氣(主要成份為甲烷)在中高壓和低溫條件下混合時產(chǎn)生的晶體物質(zhì)。外貌極似冰雪,點火即可燃燒,故又稱之為“可燃冰”或者“氣冰”、“固體瓦斯”。它在自然界分布非常廣泛,海底以下0~1500m深的大陸架或北極等地的永久凍土帶都有可能存在,世界上有79個國家和地區(qū)都發(fā)現(xiàn)了天然氣水合物氣藏。據(jù)第28界國際地質(zhì)大會提供的資料顯示,海底有大量的在然氣水合物,可滿足人類1000年的能源需要
世界上至今還沒有完美的開采方案??茖W(xué)家們認(rèn)為,這種礦藏哪怕受到最小的破壞,甚至是自然的破壞,就足以導(dǎo)致甲烷氣的大量散失。“可燃冰”中甲烷的總量大致是大氣中甲烷數(shù)量的3000倍。作為短期溫室氣體,甲烷比二氧化碳所產(chǎn)生的溫室效應(yīng)要大得多,它所產(chǎn)生的后果將是不堪設(shè)想的。同時,陸緣海邊的“可燃冰”開采起來也十分困難,一旦出了井噴事故,就會造成海水汽化,發(fā)生海嘯船翻。“可燃冰”的開采方法主要有熱激化法、減壓法和置換法三種。開采的最大難點是保證井底穩(wěn)定,使甲烷氣不泄漏、不引發(fā)溫室效應(yīng)。
開采方案主要有三種。第一是熱激化法。利用“可燃冰”在加溫時分解的特性,使其由固態(tài)分解出甲烷蒸汽。但此方法難處在于不好收集。海底的多孔介質(zhì)不是集中為“一片”,也不是一大塊巖石,而是較為均勻地遍布著。如何布設(shè)管道并高效收集是急于解決的問題。
方案二是減壓法。有科學(xué)家提出將核廢料埋入地底,利用核輻射效應(yīng)使其分解。但它們都面臨著和熱解法同樣布設(shè)管道并高效收集的問題。
方案三是“置換法”。研究證實,將CO2液化,注入1500米以下的洋面,就會生成二氧化碳水合物,它的比重比海水大,于是就會沉入海底。如果將CO2注射入海底的甲烷水合物儲層,因CO2較之甲烷易于形成水合物,因而就可能將甲烷水合物中的甲烷分子“擠走”,從而將其置換出來。
可燃冰的鑒別方法
天然氣水合物可以通過底質(zhì)沉積物取樣、鉆探取樣和深潛考察等方式直接識別,也可以通過擬海底反射層(BSR)、速度和震幅異常結(jié)構(gòu)、地球化學(xué)異常、多波速測深與海底電視攝像等方式間接識別。下面介紹一些間接標(biāo)志。
地震標(biāo)志
海洋天然氣水合物存在的主要地震標(biāo)志有擬海底反射層(BSR)、振幅變形(空白反射)、速度倒置、速度-振幅異常結(jié)構(gòu)(VAMP)。大規(guī)模的甲烷水合物聚集可以通過高電阻率(>100歐米)聲波速度、低體積密度等號數(shù)進(jìn)行直接判讀。
BSR是地震剖面上的一個平行或基本平行于海底、可切過一切層面或斷層的反射界面,天然氣水合物穩(wěn)定帶之下還常圈閉著大量的游離甲烷氣體,從而導(dǎo)致在地震反射剖面上產(chǎn)生BSR。現(xiàn)已證實,BSR代表的是氣體水合物穩(wěn)定帶的基底,其上為固態(tài)的水合物層段,聲波速率高,其下為游離氣或僅孔隙水充填的沉積物,聲波速率低,因而在地震剖面上形成強的負(fù)阻抗反射界面。因此,BSR是由于低滲透率的水合物層與其下大量游離天然氣及飽和水沉積物之間在聲阻抗(或聲波傳播速度)上存在較大差別引起的。因為水合物層的底界面主要受所在海域的地溫梯度控制,往往位于海底以下一定的深度,因此BSR基本平行于海底,被稱為“擬海底反射層”。BSR除被用來識別天然氣水合物的存在和編制水合物分布圖外,還被用來判明天然氣水合物層的頂?shù)捉绾彤a(chǎn)狀,計算水合物層深度、厚度和體積。
然而,并不是所有的水合物都存在BSR。在平緩的海底,即使有天然氣水合物,也不易識別出BSR。BSR常常出現(xiàn)在斜坡或地形起伏的海域。另外,也并不是所有的BSR都對應(yīng)有天然氣水合物。在極少數(shù)情況下,其它因素也可能導(dǎo)致BSR.還應(yīng)注意的是,盡管絕大部分水合物層都位于BSR之上,但并不是所有的水合物層都位于BSR之上,這已被深海鉆探證明。因此,BSR不能被作為天然氣水合物的唯一標(biāo)志,應(yīng)結(jié)合其它方法綜合判斷。近幾年,分析和研究地震的速度結(jié)構(gòu)成為該學(xué)科領(lǐng)域的前沿。水合物層是高速層,其下飽氣或飽水層是低速層。在速度曲線上,BSR界面處的速度會出現(xiàn)突然降低,表現(xiàn)出明顯的速度異常結(jié)構(gòu)。此外,分析振幅結(jié)構(gòu)也可識別天然氣水合物。相比而言,水合物層是剛性層,其下飽氣或飽水層是塑性層,在振幅曲線上,BSR界面處的振幅會出現(xiàn)突然減小,表現(xiàn)出明顯的振幅異常結(jié)構(gòu)。這些方法對海底平緩的海域來說,尤其顯的重要。
地球化學(xué)標(biāo)志
淺層沉積物和底層海水的甲烷濃度異常高、淺層沉積物孔隙水Cl-含量(或礦化度)和δ18O異常高、出現(xiàn)富含重氧的菱鐵礦等,均可作為天然氣水合物的地球化學(xué)標(biāo)志。
海底地形地貌標(biāo)志
在海洋環(huán)境中,水合物富集區(qū)烴類氣體的滲逸可在海底形成特殊環(huán)境和特殊的微地形地貌。天然氣水合物的地貌標(biāo)志主要有泄氣窗、甲烷氣苗、泥火山、麻點狀地形、碳酸鹽殼、化學(xué)合成生物群等。在最近幾年德國基爾大學(xué) Geomar研究所通過海底觀測,在美國俄勒岡州西部大陸邊緣Cascadia水合物海臺就發(fā)現(xiàn)了許多不連續(xù)分布、大小在5cm2左右的水合物泄氣窗,泄氣窗中甲烷氣苗一股一股地滲出,滲氣速度為每分鐘5公升。在該滲氣流的周圍有微生物、蛤和碳酸鹽殼。
看過“如何鑒別可燃冰”的人還看了:
2.空氣是怎樣形成的
5.大海是怎么形成的