不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦 > 優(yōu)秀作品專欄 > 學(xué)習(xí)心得 >

人工智能學(xué)習(xí)心得

時間: 健輝0 分享

有了一些收獲以后,有這樣的時機(jī),要好好記錄下來,這樣就可以總結(jié)出具體的經(jīng)驗和想法。那么寫心得體會要注意的內(nèi)容有什么呢?下面是小編整理的人工智能學(xué)習(xí)心得,歡迎閱讀,希望大家能夠喜歡。

人工智能學(xué)習(xí)心得

人工智能學(xué)習(xí)心得【篇1】

人工智能改變了我們的生活方式,理解什么是人工智能,才能知道人工智能教育要培養(yǎng)學(xué)生什么知識,什么素養(yǎng),才能為社會發(fā)展提供源源不斷的動力源泉。

人工智能簡稱AI,它是研究、開發(fā)用于模擬、延伸和擴(kuò)展人的智能的理論、方法、技術(shù)及應(yīng)用系統(tǒng)的一門新的技術(shù)科學(xué),在此次人工智能教育論壇中,黃錦輝教授對人工智能用更加利于理解的解釋是人工智能等于云計算、大數(shù)據(jù)、機(jī)器學(xué)習(xí)和5G技術(shù)綜合的產(chǎn)物,做好人工智能教育能實現(xiàn)不斷提升人們生活的質(zhì)量,在論壇中,劉三女牙教授指出人工智能教育的智能化新模式正在形成,其教育的著力點集中在算力、數(shù)據(jù)處理、算法以及場景化的學(xué)習(xí),使學(xué)生對教材可以理解,教育情景可以感知,學(xué)習(xí)服務(wù)可以定制,使人工智能教育從智能增強(qiáng),轉(zhuǎn)變?yōu)橹悄苎a(bǔ)償,最終達(dá)到智能替代。

在實際過程中,很多學(xué)校沒有開展人工智能教育,人工智能教育不是一蹴而就的事情,那要怎么逐步開展起來呢?人工智能開展過程中,主要面臨的問題主要有:第一教材的缺乏,第二師資的缺乏,第三課程實施的場地缺乏,第四怎么教的問題。在18日下午分論壇中,很多同行教師提供不同學(xué)校具有特色的人工智能教育開展模式,為我們提供了開展人工智能教育參照案例,針對教材缺乏問題,對人工智能比較重視的'學(xué)校有的建立區(qū)域教研和課程資源建設(shè),有的開發(fā)人工智能課程、有的建立研學(xué)基地,還有的建立網(wǎng)絡(luò)學(xué)習(xí)平臺;針對師資問題,教師主要通過自學(xué),網(wǎng)絡(luò)學(xué)習(xí)與多參加線下培訓(xùn)學(xué)習(xí)方式自我成長,提高課程融合能力和課程開發(fā)能力;針對實施場地和怎么教的問題,大部分學(xué)校沒有開展起來的原因可能主要也是因為資金對場地和平臺投入比較大,但是可以利用信息技術(shù)課堂作為人工智能教育的切入點,融入數(shù)據(jù)、算法、程序設(shè)計、機(jī)器人課程、開源硬件類課程等,利用項目式教學(xué)或其他活動如科技創(chuàng)新、創(chuàng)客、跨學(xué)科活動等助力課程落地,逐步建立課程——空間——活動的人工智能教育活動實踐,在論壇中也介紹了人工智能教育需要遵循學(xué)生各年齡層的學(xué)情特點,分為三個階段,第一階段大班STEM基礎(chǔ)教學(xué),第二輪實踐教學(xué)建立社團(tuán)校隊,第三開展項目式專訓(xùn),培育科技特長生,或者各年級年級培養(yǎng)學(xué)生人工智能教育的不同目標(biāo),小學(xué)低年級可以主要培養(yǎng)綜合素養(yǎng),小學(xué)高年級跨學(xué)科應(yīng)用,初中形成目標(biāo)方向,高中向目標(biāo)方向進(jìn)行研究。

這次的粵港澳臺人工智能教育論壇學(xué)習(xí),拓寬了我對人工智能教育的認(rèn)識,對我的教學(xué)如何開展人工智能教育具有指導(dǎo)和借鑒意義。

人工智能學(xué)習(xí)心得【篇2】

現(xiàn)代社會對信息的需求量越來越大,信息傳遞速度也越來越快,二十一世紀(jì)是信息化的世紀(jì),推動世界經(jīng)濟(jì)發(fā)展的主要是信息技術(shù)、生物技術(shù)和新材料技術(shù),而其中信息技術(shù)對人們的經(jīng)濟(jì)、政治和社會生活影響最大,信息業(yè)正逐步成為社會的主要支柱產(chǎn)業(yè),人類社會的進(jìn)步將依賴于信息技術(shù)的發(fā)展和應(yīng)用。

電子技術(shù)(尤其是計算機(jī)技術(shù))和網(wǎng)絡(luò)通信技術(shù)的發(fā)展,使社會高度信息化,在建筑物內(nèi)部,應(yīng)用信息技術(shù)、古老的建筑技術(shù)和現(xiàn)代的高科技相結(jié)合,于是產(chǎn)生"樓宇智能化"。樓宇智能化是采用計算機(jī)技術(shù)對建筑物內(nèi)的設(shè)備進(jìn)行自動控制,對信息資源進(jìn)行管理,為用戶提供信息服務(wù),它是建筑技術(shù)適應(yīng)現(xiàn)代社會信息化要求的結(jié)晶。

1984年美國聯(lián)合科技的'UTBS公司在康涅狄格(ConnecticutStste)州哈伏特(Hartford)市將一座金融大廈進(jìn)行改造并取名CityPlace(都市大廈),主要是增添了計算機(jī)設(shè)備、數(shù)據(jù)通信線路、程控交換機(jī)等,使住戶可以得到通信、文字處理、電子函件、情報資料檢索、行情查詢等服務(wù)。同時,對大樓的所有空調(diào)、給排水、供配電設(shè)備、防火、保安設(shè)備由計算機(jī)進(jìn)行控制,實現(xiàn)綜合自動化、信息化,使大樓的用戶獲得了經(jīng)濟(jì)舒適、高效安全的環(huán)境,使大廈功能發(fā)生質(zhì)的飛躍,從而誕生了世界上第一座智能化樓宇。自此以后,世界上樓宇智能化建設(shè)走上了高速發(fā)展軌道。

人工智能學(xué)習(xí)心得【篇3】

今天是我學(xué)習(xí)人工智能的第一堂課,也是我上大學(xué)以來第一次接觸人工智能這門課,通過老師的講解,我對人工智能有了一些簡單的感性認(rèn)識,我知道了人工智能從誕生,發(fā)展到今天經(jīng)歷一個漫長的過程,許多人為此做出了不懈的努力。我覺得這門課真的是一門富有挑戰(zhàn)性的科學(xué),而從事這項工作的人不僅要懂得計算機(jī)知識,還必須懂得心理學(xué)和哲學(xué)。

人工智能在很多領(lǐng)域得到了發(fā)展,在我們的日常生活和學(xué)習(xí)中發(fā)揮了重要的作用。如:機(jī)器翻譯,機(jī)器翻譯是利用計算機(jī)把一種自然語言轉(zhuǎn)變成另一種自然語言的過程,用以完成這一過程的軟件系統(tǒng)叫做機(jī)器翻譯系統(tǒng)。利用這些機(jī)器翻譯系統(tǒng)我們可以很方便的完成一些語言翻譯工作。目前,國內(nèi)的機(jī)器翻譯軟件有很多,富有代表性意義的當(dāng)屬“金山詞霸”,它可以迅速的查詢英文單詞和詞組句子翻譯,重要的是它還可以提供發(fā)音功能,為用戶提供了極大的'方便。

通過這堂課,我明白了人工智能發(fā)展的歷史和所處的地位,它始終處于計算機(jī)發(fā)展的最前沿。我相信人工智能在不久的將來將會得到更深一步的實現(xiàn),會創(chuàng)造出一個全新的人工智能世界。

人工智能學(xué)習(xí)心得【篇4】

一、研究領(lǐng)域

在大多數(shù)數(shù)學(xué)科中存在著幾個不同的研究領(lǐng)域,每個領(lǐng)域都有著特有的感興趣的研究課題、研究技術(shù)和術(shù)語。在人工智能中,這樣的領(lǐng)域包括自然語言處理、自動定理證明、自動程序設(shè)計、智能檢索、智能調(diào)度、機(jī)器學(xué)習(xí)、專家系統(tǒng)、機(jī)器人學(xué)、智能控制、模式識別、視覺系統(tǒng)、神經(jīng)網(wǎng)絡(luò)、agent、計算智能、問題求解、人工生命、人工智能方法、程序設(shè)計語言等。

在過去50多年里,已經(jīng)建立了一些具有人工智能的計算機(jī)系統(tǒng);例如,能夠求解微分方程的,下棋的,設(shè)計分析集成電路的,合成人類自然語言的,檢索情報的,診斷疾病以及控制控制太空飛行器、地面移動機(jī)器人和水下機(jī)器人的具有不同程度人工智能的計算機(jī)系統(tǒng)。人工智能是一種外向型的學(xué)科,它不但要求研究它的人懂得人工智能的知識,而且要求有比較扎實的數(shù)學(xué)基礎(chǔ),哲學(xué)和生物學(xué)基礎(chǔ),只有這樣才可能讓一臺什么也不知道的機(jī)器模擬人的思維。因為人工智能的研究領(lǐng)域十分廣闊,它總的來說是面向應(yīng)用的,也就說什么地方有人在工作,它就可以用在什么地方,因為人工智能的最根本目的還是要模擬人類的思維。參照人在各種活動中的功能,我們可以得到人工智能的領(lǐng)域也不過就是代替人的活動而已。哪個領(lǐng)域有人進(jìn)行的智力活動,哪個領(lǐng)域就是人工智能研究的領(lǐng)域。人工智能就是為了應(yīng)用機(jī)器的長處來幫助人類進(jìn)行智力活動。人工智能研究的目的就是要模擬人類神經(jīng)系統(tǒng)的功能。

二、各領(lǐng)域國內(nèi)外研究現(xiàn)狀(進(jìn)展成果)

近年來,人工智能的研究和應(yīng)用出現(xiàn)了許多新的領(lǐng)域,它們是傳統(tǒng)人工智能的延伸和擴(kuò)展。在新世紀(jì)開始的時候,這些新研究已引起人們的更密切關(guān)注。這些新領(lǐng)域有分布式人工智能與艾真體(agent)、計算智能與進(jìn)化計算、數(shù)據(jù)挖掘與知識發(fā)現(xiàn),以及人工生命等。下面逐一加以概略介紹。

1、分布式人工智能與艾真體

分布式人工智能(distributed ai,dai)是分布式計算與人工智能結(jié)合的結(jié)果。dai系統(tǒng)以魯棒性作為控制系統(tǒng)質(zhì)量的標(biāo)準(zhǔn),并具有互操作性,即不同的異構(gòu)系統(tǒng)在快速變化的環(huán)境中具有交換信息和協(xié)同工作的能力。

分布式人工智能的研究目標(biāo)是要創(chuàng)建一種能夠描述自然系統(tǒng)和社會系統(tǒng)的精確概念模型。dai中的智能并非獨立存在的概念,只能在團(tuán)體協(xié)作中實現(xiàn),因而其主要研究問題是各艾真體間的合作與對話,包括分布式問題求解和多艾真體系統(tǒng)(multiagent system,mas)兩領(lǐng)域。其中,分布式問題求解把一個具體的求解問題劃分為多個相互合作和知識共享的模塊或結(jié)點。多艾真體系統(tǒng)則研究各艾真體間智能行為的協(xié)調(diào),包括規(guī)劃、知識、技術(shù)和動作的協(xié)調(diào)。這兩個研究領(lǐng)域都要研究知識、資源和控制的劃分問題,但分布式問題求解往往含有一個全局的概念模型、問題和成功標(biāo)準(zhǔn),而mas則含有多個局部的概念模型、問題和成功標(biāo)準(zhǔn)。

mas更能體現(xiàn)人類的社會智能,具有更大的靈活性和適應(yīng)性,更適合開放和動

態(tài)的世界環(huán)境,因而倍受重視,已成為人工智能以至計算機(jī)科學(xué)和控制科學(xué)與工程的研究熱點。當(dāng)前,艾真體和mas的研究包括理論、體系結(jié)構(gòu)、語言、合作與協(xié)調(diào)、通訊和交互技術(shù)、mas學(xué)習(xí)和應(yīng)用等。mas已在自動駕駛、機(jī)器人導(dǎo)航、機(jī)場管理、電力管理和信息檢索等方面獲得應(yīng)用。

2、計算智能與進(jìn)化計算

計算智能(puting intelligence)涉及神經(jīng)計算、模糊計算、進(jìn)化計算等研究領(lǐng)域。其中,神經(jīng)計算和模糊計算已有較長的研究歷史,而進(jìn)化計算則是較新的研究領(lǐng)域。在此僅對進(jìn)化計算加以說明。

進(jìn)化計算(evolutionary putation)是指一類以達(dá)爾文進(jìn)化論為依據(jù)來設(shè)計、控制和優(yōu)化人工系統(tǒng)的技術(shù)和方法的總稱,它包括遺傳算法(genetic algorithms)、進(jìn)化策略(evolutionary strategies)和進(jìn)化規(guī)劃(evolutionary programming)。它們遵循相同的指導(dǎo)思想,但彼此存在一定差別。同時,進(jìn)化計算的研究關(guān)注學(xué)科的交叉和廣泛的應(yīng)用背景,因而引入了許多新的方法和特征,彼此間難于分類,這些都統(tǒng)稱為進(jìn)化計算方法。目前,進(jìn)化計算被廣泛運用于許多復(fù)雜系統(tǒng)的自適應(yīng)控制和復(fù)雜優(yōu)化問題等研究領(lǐng)域,如并行計算、機(jī)器學(xué)習(xí)、電路設(shè)計、神經(jīng)網(wǎng)絡(luò)、基于艾真體的仿真、元胞自動機(jī)等。

達(dá)爾文進(jìn)化論是一種魯棒的搜索和優(yōu)化機(jī)制,對計算機(jī)科學(xué),特別是對人工智能的發(fā)展產(chǎn)生了很大的影響。大多數(shù)生物體通過自然選擇和有性生殖進(jìn)行進(jìn)化。自然選擇決定了群體中哪些個體能夠生存和繁殖,有性生殖保證了后代基因中的混合和重組。自然選擇的原則是適者生存,即物競天擇,優(yōu)勝劣汰。

直到幾年前,遺傳算法、進(jìn)化規(guī)劃、進(jìn)化策略三個領(lǐng)域的研究才開始交流,并發(fā)現(xiàn)它們的共同理論基礎(chǔ)是生物進(jìn)化論。因此,把這三種方法統(tǒng)稱為進(jìn)化計算,而把相應(yīng)的算法稱為進(jìn)化算法。

3、數(shù)據(jù)挖掘與知識發(fā)現(xiàn)

知識獲取是知識信息處理的關(guān)鍵問題之一。20世紀(jì)80年代人們在知識發(fā)現(xiàn)方面取得了一定的進(jìn)展。利用樣本,通過歸納學(xué)習(xí),或者與神經(jīng)計算結(jié)合起來進(jìn)行知識獲取已有一些試驗系統(tǒng)。數(shù)據(jù)挖掘和知識發(fā)現(xiàn)是90年代初期新崛起的一個活躍的研究領(lǐng)域。在數(shù)據(jù)庫基礎(chǔ)上實現(xiàn)的知識發(fā)現(xiàn)系統(tǒng),通過綜合運用統(tǒng)計學(xué)、粗糙集、模糊數(shù)學(xué)、機(jī)器學(xué)習(xí)和專家系統(tǒng)等多種學(xué)習(xí)手段和方法,從大量的數(shù)據(jù)中提煉出抽象的知識,從而揭示出蘊涵在這些數(shù)據(jù)背后的客觀世界的內(nèi)在聯(lián)系和本質(zhì)規(guī)律,實現(xiàn)知識的自動獲取。這是一個富有挑戰(zhàn)性、并具有廣闊應(yīng)用前景的研究課題。

從數(shù)據(jù)庫獲取知識,即從數(shù)據(jù)中挖掘并發(fā)現(xiàn)知識,首先要解決被發(fā)現(xiàn)知識的表達(dá)問題。最好的表達(dá)方式是自然語言,因為它是人類的思維和交流語言。知識表示的最根本問題就是如何形成用自然語言表達(dá)的概念。

機(jī)器知識發(fā)現(xiàn)始于1974年,并在此后十年中獲得一些進(jìn)展。這些進(jìn)展往往與專家系統(tǒng)的知識獲取研究有關(guān)。到20世紀(jì)80年代末,數(shù)據(jù)挖掘取得突破。越來越多的研究者加入到知識發(fā)現(xiàn)和數(shù)據(jù)挖掘的研究行列?,F(xiàn)在,知識發(fā)現(xiàn)和數(shù)據(jù)挖掘已成為人工智能研究的又一熱點。

比較成功的知識發(fā)現(xiàn)系統(tǒng)有用于超級市場商品數(shù)據(jù)分析、解釋和報告的

coverstory系統(tǒng),用于概念性數(shù)據(jù)分析和查尋感興趣關(guān)系的集成化系統(tǒng)explora,交互式大型數(shù)據(jù)庫分析工具kdw,用于自動分析大規(guī)模天空觀測數(shù)據(jù)的skicat系統(tǒng),以及通用的數(shù)據(jù)庫知識發(fā)現(xiàn)系統(tǒng)kdd等。

4、人工生命

人工生命(artificial life,alife)的概念是由美國圣菲研究所非線性研究組的蘭頓(langton)于1987年提出的,旨在用計算機(jī)和精密機(jī)械等人工媒介生成或構(gòu)造出能夠表現(xiàn)自然生命系統(tǒng)行為特征的仿真系統(tǒng)或模型系統(tǒng)。自然生命系統(tǒng)行為具有自組織、自復(fù)制、自修復(fù)等特征以及形成這些特征的混沌動力學(xué)、進(jìn)化和環(huán)境適應(yīng)。

人工生命所研究的人造系統(tǒng)能夠演示具有自然生命系統(tǒng)特征的行為,在“生命之所能”(life as it could be)的廣闊范圍內(nèi)深入研究“生命之所知”(life as we know it)的實質(zhì)。只有從“生命之所能”的廣泛內(nèi)容來考察生命,才能真正理解生物的本質(zhì)。人工生命與生命的形式化基礎(chǔ)有關(guān)。生物學(xué)從問題的頂層開始,把器官、組織、細(xì)胞、細(xì)胞膜,直到分子,以探索生命的奧秘和機(jī)理。人工生命則從問題的底層開始,把器官作為簡單機(jī)構(gòu)的宏觀群體來考察,自底向上進(jìn)行綜合,把簡單的由規(guī)則支配的對象構(gòu)成更大的集合,并在交互作用中研究非線性系統(tǒng)的類似生命的.全局動力學(xué)特性。

人工生命的理論和方法有別于傳統(tǒng)人工智能和神經(jīng)網(wǎng)絡(luò)的理論和方法。人工生命把生命現(xiàn)象所體現(xiàn)的自適應(yīng)機(jī)理通過計算機(jī)進(jìn)行仿真,對相關(guān)非線性對象進(jìn)行更真實的動態(tài)描述和動態(tài)特征研究。

人工生命學(xué)科的研究內(nèi)容包括生命現(xiàn)象的仿生系統(tǒng)、人工建模與仿真、進(jìn)化動力學(xué)、人工生命的計算理論、進(jìn)化與學(xué)習(xí)綜合系統(tǒng)以及人工生命的應(yīng)用等。比較典型的人工生命研究有計算機(jī)病毒、計算機(jī)進(jìn)程、進(jìn)化機(jī)器人、自催化網(wǎng)絡(luò)、細(xì)胞自動機(jī)、人工核苷酸和人工腦等。

三、學(xué)了人工智能課程的收獲

(1)了解人工智能的概念和人工智能的發(fā)展,了解國際人工智能的主要流派和路線,了解國內(nèi)人工智能研究的基本情況,熟悉人工智能的研究領(lǐng)域。

(2)較詳細(xì)地論述知識表示的各種主要方法。重點掌握了狀態(tài)空間法、問題歸約法和謂詞邏輯法,熟悉語義網(wǎng)絡(luò)法,了解知識表示的其他方法,如框架法、劇本法、過程法等。

(3)掌握了盲目搜索和啟發(fā)式搜索的基本原理和算法,特別是寬度優(yōu)先搜索、深度優(yōu)先搜索、等代價搜索、啟發(fā)式搜索、有序搜索、ai算法等。了解博弈樹搜索、遺傳算法和模擬退火算法的基本方法。

(4)掌握了消解原理、規(guī)則演繹系統(tǒng)和產(chǎn)生式系統(tǒng)的技術(shù)、了解不確定性推理、非單調(diào)推理的概念。

(5)概括性地了解了人工智能的主要應(yīng)用領(lǐng)域,如專家系統(tǒng)、機(jī)器學(xué)習(xí)、規(guī)劃系統(tǒng)、自然語言理解和智能控制等。

(6)基本了解人工智能程序設(shè)計的語言和工具。

四、對人工智能研究的展望

對現(xiàn)代社會的影響有多大?工業(yè)領(lǐng)域,尤其是制造業(yè),已成功地使用了人工智能技術(shù),包括智能設(shè)計、虛擬制造、在線分析、智能調(diào)度、仿真和規(guī)劃等。金融業(yè),股票商利用智能系統(tǒng)輔助其分析,判斷和決策;應(yīng)用卡欺詐檢測系統(tǒng)業(yè)已得到普遍應(yīng)用。人工智能還滲透到人們的日常生活,cad,cam,cai,cap,cims等一系列智能產(chǎn)品給大家?guī)砹藰O大的方便,它還改變了傳統(tǒng)的通信方式,語音撥號,手寫短信的智能手機(jī)越來越人性化。

人工智能還影響了你們的文化和娛樂生活,引發(fā)人們更深層次的精神和哲學(xué)層面的思考,從施瓦辛格主演的《終結(jié)者》系列,到基努.里維斯主演的《黑客帝國》系列以及斯皮爾伯格導(dǎo)演的《人工智能》,都有意無意的提出了同樣的問題:我們應(yīng)該如何看待人工智能?如何看待具有智能的機(jī)器?會不會有一天機(jī)器的智能將超過人的智能?問題的答案也許千差萬別,我個人認(rèn)為上述擔(dān)心不太可能成為現(xiàn)實,因為我們理解人工智能并不是讓它取代人類智能,而是讓它模擬人類智能,從而更好地為人類服務(wù)。

當(dāng)前人工智能技術(shù)發(fā)展迅速,新思想,新理論,新技術(shù)不斷涌現(xiàn),如模糊技術(shù),模糊--神經(jīng)網(wǎng)絡(luò),遺傳算法,進(jìn)化程序設(shè)計,混沌理論,人工生命,計算智能等。以agent概念為基礎(chǔ)的分布式人工智能正在異軍突起,特別是對于軟件的開發(fā),“面向agent技術(shù)”將是繼“面向?qū)ο蠹夹g(shù)”后的又一突破。從萬維網(wǎng)到人工智能的研究正在如火如荼的開展。

五、對課程的建議

(1)能夠結(jié)合現(xiàn)在最新研究成果著重講解重點知識,以及講述在一些研究成

果中人工智能那些知識被應(yīng)用。

(2)多推薦一些過于人工智能方面的電影,如:《終結(jié)者》系列、《黑客帝國》

系列、《人工智能》等,從而增加同學(xué)對這門課程學(xué)習(xí)的興趣。

(3)條件允許的話,可以安排一些實驗課程,讓同學(xué)們自己制作一些簡單的

作品,增強(qiáng)同學(xué)對人工智能的興趣,加強(qiáng)同學(xué)之間的學(xué)習(xí)。

(4)課堂上多講解一些人工智能在各個領(lǐng)域方面的應(yīng)用,以及著重闡述一些

新的和正在研究的人工智能方法與技術(shù),讓同學(xué)們可以了解近期發(fā)展起來的方法和技術(shù),在講解時最好多舉例,再結(jié)合原理進(jìn)行講解,更助于同學(xué)們對人工智能的理解。

人工智能學(xué)習(xí)心得【篇5】

為了使學(xué)生更加明白以后的發(fā)展方向,和更好的學(xué)習(xí)好書本上的知識。鄧?yán)蠋煄ьI(lǐng)我們來到了我們學(xué)校的樓宇智能化實訓(xùn)基地。

本次實習(xí)的'主要任務(wù)就是認(rèn)識實習(xí),了解一下樓宇智能化設(shè)備。

我們在現(xiàn)場聽了鄧?yán)蠋煹南嚓P(guān)說明和講解,聽他講完后,在我的腦海里有了一個大體的思路。樓宇智能化控制系統(tǒng)是分為六大單元,一般都是運用于現(xiàn)代化智能小區(qū)內(nèi),那六大單元包括:門禁對講系統(tǒng),火災(zāi)報警系統(tǒng),綜合布線系統(tǒng),安防系統(tǒng),視頻監(jiān)控系統(tǒng)和DDC系統(tǒng)。這六大單元也分了詳細(xì)的領(lǐng)域,1門禁對講系統(tǒng)包括室內(nèi)機(jī)、單元機(jī)、中心管理機(jī)等,含語音、視頻、控制信號傳送等,具有通話、視頻、開門等功能;2火災(zāi)報警系統(tǒng)包括:手動報警器、聲光報警器、火災(zāi)顯示盤、報警主機(jī)等;3綜合布線系統(tǒng)包括:RJ45配線架、以太網(wǎng)交換機(jī)、電話程控交換機(jī)、電話配線架等;實現(xiàn)終端電話呼叫、信息插座功能測試;4安防系統(tǒng)主要是周邊防范裝置和求助按鈕及可燃?xì)怏w探測器、紅外對射報警器、聲光報警器、紅外探測器、門磁等;完成安防探測器和報警主機(jī)、視頻監(jiān)控系統(tǒng)之間的線路鋪設(shè)和連接;5視頻監(jiān)控系統(tǒng)就是槍機(jī)探頭、高速球機(jī)探頭、矩陣主機(jī)、彩色監(jiān)視器、硬盤錄像機(jī)等,實現(xiàn)監(jiān)視器的視頻監(jiān)控和畫面切換;6DDC控制系統(tǒng)包括照明和光照度傳感器,實現(xiàn)上位監(jiān)控工程通訊連結(jié)、動畫組態(tài)。

這六大基本單元使整個系統(tǒng)完全智能化和自動化,全部都可以直接由電腦來操作完成,我最大的感觸就是這些玩意太新穎,太先進(jìn)了,感覺我們這個專業(yè)好有前途。

通過本次實習(xí),我了解了主要的智能化系統(tǒng)和設(shè)備,明白了將來的工作任務(wù),對將來的發(fā)展有了方向和目標(biāo),所以要更好的學(xué)習(xí)好這門功課了!

人工智能學(xué)習(xí)心得【篇6】

今天是我學(xué)習(xí)人工智能的第一堂課,也是我上大學(xué)以來第一次接觸人工智能這門課,通過老師的講解,我對人工智能有了一些簡單的感性認(rèn)識,我知道了人工智能從誕生,發(fā)展到今天經(jīng)歷一個漫長的過程,許多人為此做出了不懈的'努力。我覺得這門課真的是一門富有挑戰(zhàn)性的科學(xué),而從事這項工作的人不僅要懂得計算機(jī)知識,還必須懂得心理學(xué)和哲學(xué)。

人工智能在很多領(lǐng)域得到了發(fā)展,在我們的日常生活和學(xué)習(xí)中發(fā)揮了重要的作用。如:機(jī)器翻譯,機(jī)器翻譯是利用計算機(jī)把一種自然語言轉(zhuǎn)變成另一種自然語言的過程,用以完成這一過程的軟件系統(tǒng)叫做機(jī)器翻譯系統(tǒng)。利用這些機(jī)器翻譯系統(tǒng)我們可以很方便的完成一些語言翻譯工作。目前,國內(nèi)的機(jī)器翻譯軟件有很多,富有代表性意義的當(dāng)屬“金山詞霸”,它可以迅速的查詢英文單詞和詞組句子翻譯,重要的是它還可以提供發(fā)音功能,為用戶提供了極大的方便。

通過這堂課,我明白了人工智能發(fā)展的歷史和所處的地位,它始終處于計算機(jī)發(fā)展的最前沿。我相信人工智能在不久的將來將會得到更深一步的實現(xiàn),會創(chuàng)造出一個全新的人工智能世界。

人工智能學(xué)習(xí)心得【篇7】

李開復(fù)號稱最會說話的計算機(jī)男神,曾經(jīng)是微軟谷歌的副掌門,現(xiàn)在是創(chuàng)新工廠的大bo,在微博有超過半個億粉絲。第一此認(rèn)識到他和人工智能這個概念是在奇葩大會這個節(jié)目中,他的觀點及幽默風(fēng)趣的話語引起了我的興趣,所以在這個寒假中我讀了他的《人工智能》一書。

近幾年,移動互聯(lián)網(wǎng)、網(wǎng)上購物、物流快遞、高鐵、地鐵、城市建設(shè)等讓我們生活發(fā)生了天翻地覆的變化。讓我對未來產(chǎn)生了無限的暢想,我的科目二一直沒過,為什么人要買車?為什么不能有一輛無所不在的滴滴,當(dāng)我們要出門的時候它就來了,它是共享經(jīng)濟(jì),它會降低空氣污染,甚至有一天車與車之間能對話:“我要爆胎了,快散開”等等。

下一個十年,社會還會發(fā)生怎樣的變化呢?李開復(fù)認(rèn)為,人工智能、機(jī)器人作為大熱的方向,也會引領(lǐng)時代變革風(fēng),很多邏輯簡單、重復(fù)式、機(jī)械式的勞作被機(jī)器人取代;制造、金融、家政等等行業(yè),很多傳統(tǒng)的管理經(jīng)營模式也會隨之發(fā)生改變。未來人類50%的工作都會被人工智能取代。但是人與機(jī)器最大區(qū)別是有感情,在未來創(chuàng)新思維、審美能力、藝術(shù)哲學(xué)這些更顯的珍貴。

人是最復(fù)雜情感動物,怎樣才能教育好學(xué)生,使教育發(fā)揮最大限度的作用呢,那就是老師的愛,是人工智能永遠(yuǎn)無法做到的,我認(rèn)為幼師這個職業(yè)是不會被取代的,人工智能的發(fā)展能夠給我們許多幫助,現(xiàn)在也有許多幼兒園在教育教學(xué)中運用了VR、AR等技術(shù),以后科技越來越發(fā)達(dá)我們的教學(xué)工作也會越來越便利。但是現(xiàn)在微博上有一件事也引起了大家的熱議,一位小學(xué)教師在教古詩“飛流直下三千尺,疑似銀河落九天”時,播放了現(xiàn)實瀑布視頻來展現(xiàn)瀑布的`氣勢磅礴,可是瀑布落下真的有三千尺嗎?這樣會不會局限的孩子的想象力呢,莎士比亞說:“一千個讀者眼中就有一千個哈姆雷特”因而每個人對古詩的理解也就不同。在科技高速發(fā)展之時要保持與時俱進(jìn)、不懼改變、不斷學(xué)習(xí)成長就不會被時代淘汰。人工智能會讓自己從事的工作帶來什么樣的改變?如何運用?這些問題更值得我們大家深思。

人工智能學(xué)習(xí)心得【篇8】

通過這學(xué)期的學(xué)習(xí),我對人工智能有了一定的感性認(rèn)識,個人覺得人工智能是一門極富挑戰(zhàn)性的科學(xué),從事這項工作的人必須懂得計算機(jī)知識,心理學(xué)和哲學(xué)。人工智能是包括十分廣泛的科學(xué),它由不同的領(lǐng)域組成,如機(jī)器學(xué)習(xí),計算機(jī)視覺等等,總的說來,人工智能研究的一個主要目標(biāo)是使機(jī)器能夠勝任一些通常需要人類智能才能完成的復(fù)雜工作。人工智能的定義可以分為兩部分,即“人工”和“智能”。“人工”比較好理解,爭議性也不大。有時我們會要考慮什么是人力所能及制造的,或者人自身的智能程度有沒有高到可以創(chuàng)造人工智能的地步,等等。但總的來說,“人工系統(tǒng)”就是通常意義下的人工系統(tǒng)。關(guān)于什么是“智能”,就問題多多了。這涉及到其它諸如意識、自我、思維等等問題。人唯一了解的智能是人本身的智能,這是普遍認(rèn)同的觀點。但是我們對我們自身智能的理解都非常有限,對構(gòu)成人的智能的必要元素也了解有限,所以就很難定義什么是“人工”制造的“智能”了。關(guān)于人工智能一個大家比較容易接受的定義是這樣的:人工智能是人造的智能,是計算機(jī)科學(xué)、邏輯學(xué)、認(rèn)知科學(xué)交叉形成的一門科學(xué),簡稱ai。

人工智能的發(fā)展歷史大致可以分為這幾個階段:

第一階段:50年代人工智能的興起和冷落

人工智能概念首次提出后,相繼出現(xiàn)了一批顯著的成果,如機(jī)器定理證明、跳棋程序、通用問題s求解程序、lisp表處理語言等。但由于消解法推理能力的有限,以及機(jī)器翻譯等的失敗,使人工智能走入了低谷。

第二階段:60年代末到70年代,專家系統(tǒng)出現(xiàn),使人工智能研究出現(xiàn)新高潮。dendral化學(xué)質(zhì)譜分析系統(tǒng)、mycin疾病診斷和治療系統(tǒng)、prospectior探礦系統(tǒng)、hearsay—ii語音理解系統(tǒng)等專家系統(tǒng)的研究和開發(fā),將人工智能引向了實用化。并且,1969年成立了國際人工智能聯(lián)合會議

第三階段:80年代,隨著第五代計算機(jī)的研制,人工智能得到了很大發(fā)展。日本1982年開始了”第五代計算機(jī)研制計劃”,即”知識信息處理計算機(jī)系統(tǒng)kips”,其目的是使邏輯推理達(dá)到數(shù)值運算那么快。雖然此計劃最終失敗,但它的開展形成了一股研究人工智能的熱潮。

第四階段:80年代末,神經(jīng)網(wǎng)絡(luò)飛速發(fā)展。

1987年,美國召開第一次神經(jīng)網(wǎng)絡(luò)國際會議,宣告了這一新學(xué)科的誕生。此后,各國在神經(jīng)網(wǎng)絡(luò)方面的投資逐漸增加,神經(jīng)網(wǎng)絡(luò)迅速發(fā)展起來。

第五階段:90年代,人工智能出現(xiàn)新的研究高潮

由于網(wǎng)絡(luò)技術(shù)特別是國際互連網(wǎng)的技術(shù)發(fā)展,人工智能開始由單個智能主體研究轉(zhuǎn)向基于網(wǎng)絡(luò)環(huán)境下的分布式人工智能研究。不僅研究基于同一目標(biāo)的分布式問題求解,而且研究多個智能主體的多目標(biāo)問題求解,將人工智能更面向?qū)嵱?。另外,由于hopfield多層神經(jīng)網(wǎng)絡(luò)模型的提出,使人工神經(jīng)網(wǎng)絡(luò)研究與應(yīng)用出現(xiàn)了欣欣向榮的景象。人工智能已深入到社會生活的各個領(lǐng)域。

對人工智能對世界的影響的感受及未來暢想

最近看了電影《黑客帝國》一系列,對其中的科幻生活有了很大的興趣,不覺有了疑問:現(xiàn)在的世界是否會如電影中一樣呢?人工智能的神話是否會發(fā)生

在當(dāng)前社會中的呢?

在黑客帝國的世界里,程序員成為了耶穌,控制著整個世界,黑客帝國之所以成為經(jīng)典,我認(rèn)為,不是因為飛來飛去的超級人物,而是因為她暗自揭示了一個人與計算機(jī)世界的關(guān)系,一個發(fā)展趨勢。誰知道200年以后會不會是智能機(jī)器統(tǒng)治了世界?

人類正向信息化的時代邁進(jìn),信息化是當(dāng)前時代的主旋律。信息抽象結(jié)晶為知識,知識構(gòu)成智能的基礎(chǔ)。因此,信息化到知識化再到智能化,必將成為人類社會發(fā)展的趨勢。人工智能已經(jīng)并且廣泛而有深入的結(jié)合到科學(xué)技術(shù)的各門學(xué)科和社會的`各個領(lǐng)域中,她的概念,方法和技術(shù)正在各行各業(yè)廣泛滲透。而在我們的身邊,智能化的例子也屢見不鮮。在軍事、工業(yè)和醫(yī)學(xué)等領(lǐng)域中人工智能的應(yīng)用已經(jīng)顯示出了它具有明顯的經(jīng)濟(jì)效益潛力,和提升人們生活水平的最大便利性和先進(jìn)性。

智能是一個寬泛的概念。智能是人類具有的特征之一。然而,對于什么是人類智能(或者說智力),科學(xué)界至今還沒有給出令人滿意的定義。有人從生物學(xué)角度定義為“中樞神經(jīng)系統(tǒng)的功能”,有人從心理學(xué)角度定義為“進(jìn)行抽象思維的能力”,甚至有人同義反復(fù)地把它定義為“獲得能力的能力”,或者不求甚解地說它“就是智力測驗所測量的那種東西”。這些都不能準(zhǔn)確的說明人工智能的確切內(nèi)涵。

雖然難于下定義,但人工智能的發(fā)展已經(jīng)是當(dāng)前信息化社會的迫切要求,同時研究人工智能也對探索人類自身智能的奧秘提供有益的幫助。所以每一次人工智能技術(shù)的進(jìn)步都將帶動計算機(jī)科學(xué)的大跨步前進(jìn)。如果將現(xiàn)有的計算機(jī)技術(shù)、人工智能技術(shù)及自然科學(xué)的某些相關(guān)領(lǐng)域結(jié)合,并有一定的理論實踐依據(jù),計算機(jī)將擁有一個新的發(fā)展方向。

個人覺得研究人工智能的目的,一方面是要創(chuàng)造出具有智能的機(jī)器,另一方面是要弄清人類智能的本質(zhì),因此,人工智能既屬于工程的范疇,又屬于科學(xué)的范疇。通過研究和開發(fā)人工智能,可以輔助,部分替代甚至拓寬人類的智能,使計算機(jī)更好的造福人類。

人工智能學(xué)習(xí)心得【篇9】

假期中我有幸參加了市教體局舉行的新課程信息技術(shù)學(xué)科培訓(xùn),時間一共3天,在3天的時間里我學(xué)習(xí)了一些關(guān)于人工智能的相關(guān)知識,我對人工智能有了一定的認(rèn)識,個人覺得人工智能是一門極富挑戰(zhàn)性的科學(xué),從事這項工作的人必須懂得計算機(jī)知識而且要有創(chuàng)新。人工智能是包括十分廣泛的科學(xué),它由不同的領(lǐng)域組成,如機(jī)器學(xué)習(xí)、通過書寫代碼完成人工智能化操作,總的說來,人工智能研究的一個主要目標(biāo)就是使機(jī)器能夠勝任一些通常需要人類智能才能完成的復(fù)雜工作。

本次培訓(xùn)的3天時間里,老師主要講授了通過模塊化的程序完成溫濕度、led燈、rgb燈的控制等等,最后一天老師還講授了全國性或是全省性的一些比賽和優(yōu)秀的作口,通過學(xué)習(xí)我了解到人工智能已深入到生活的各個領(lǐng)域。

通過理論與實踐相結(jié)合的學(xué)習(xí)方式,使我對人工智能教育有了更直觀的了解和體驗,激發(fā)了我的探索人工智能教育的熱情,體會到創(chuàng)新的快樂。

在培訓(xùn)中,講師們耐心講解,我積極思考、動手操作、互相交流,開拓了我的創(chuàng)新意識。

通過軟件與實操培訓(xùn),使我對人工智能有了全新的認(rèn)識,理解了創(chuàng)新、實踐、分享的核心理論,并能獨立的進(jìn)行編程、實操。

我在感受人工智能教育魅力的同時,也能感受到這一種新的方法鼓勵學(xué)生創(chuàng)造和創(chuàng)新,讓學(xué)生也能利用新的數(shù)字技術(shù)、制作、分享和跨時空學(xué)習(xí),讓他們走進(jìn)人工智能教育,點亮創(chuàng)新夢想。

對人工智能對世界影響的'感受及未來暢想。

最近看了電影《黑客帝國》一系列,對其中的科幻生活有了很大興趣,不覺有了疑問:現(xiàn)在的世界是否會如電影中的一樣呢?人工智能的神話是否會發(fā)生在當(dāng)前社會呢?在黑客帝國的世界里,程序員成為了耶穌,控制著整個世界,黑客帝國之所以成為經(jīng)典,我認(rèn)為不是因為飛來飛去的超級人物,而是因為她暗自漐了一個人與計算機(jī)世界的關(guān)系,一個發(fā)展趨勢。誰知識200年以后會不會是智能機(jī)器人統(tǒng)治了世界?

人類正向信息化的時代邁進(jìn),信息化是當(dāng)前時代的主旋律。信息化是當(dāng)前時代的主旋律。信息抽象結(jié)晶為知識,知識構(gòu)成智能的基礎(chǔ)。因此,信息化到知識化再到智能化,必將成為人類社會發(fā)展的趨勢。人工智能已經(jīng)并且廣泛而有深入的組合到科學(xué)技術(shù)的各個學(xué)科和各個領(lǐng)域中,她的概念、方法和技術(shù)正在各行各業(yè)廣泛滲透。而在我們的身邊,智能化的例子也屢見不鮮。在軍事、工業(yè)和醫(yī)學(xué)等領(lǐng)域中人工智能的應(yīng)用已經(jīng)顯示出了它具有明顯的經(jīng)濟(jì)效益潛力和提升人們生活水平的最大便利性和先進(jìn)性。

人工智能學(xué)習(xí)心得【篇10】

人工智能主要研究用人工方法模擬和擴(kuò)展人的智能,最終實現(xiàn)機(jī)器智能。人工智能研究與人的思維研究密切相關(guān)。邏輯學(xué)始終是人工智能研究中的基礎(chǔ)科學(xué)問題,它為人工智能研究提供了根本觀點與方法。

1、人工智能學(xué)科的誕生

12世紀(jì)末13世紀(jì)初,西班牙羅門·盧樂提出制造可解決各種問題的通用邏輯機(jī)。17世紀(jì),英國培根在《新工具》中提出了歸納法。隨后,德國萊布尼茲做出了四則運算的手搖計算器,并提出了“通用符號”和“推理計算”的思想。19世紀(jì),英國布爾創(chuàng)立了布爾代數(shù),奠定了現(xiàn)代形式邏輯研究的基礎(chǔ)。德國弗雷格完善了命題邏輯,創(chuàng)建了一階謂詞演算系統(tǒng)。20世紀(jì),哥德爾對一階謂詞完全性定理與N形式系統(tǒng)的不完全性定理進(jìn)行了證明。在此基礎(chǔ)上,克林對一般遞歸函數(shù)理論作了深入的研究,建立了演算理論。英國圖靈建立了描述算法的機(jī)械性思維過程,提出了理想計算機(jī)模型(即圖靈機(jī)),創(chuàng)立了自動機(jī)理論。這些都為1945年匈牙利馮·諾依曼提出存儲程序的思想和建立通用電子數(shù)字計算機(jī)的馮·諾依曼型體系結(jié)構(gòu),以及1946年美國的莫克利和埃克特成功研制世界上第一臺通用電子數(shù)學(xué)計算機(jī)ENIAC做出了開拓性的貢獻(xiàn)。

以上經(jīng)典數(shù)理邏輯的理論成果,為1956年人工智能學(xué)科的誕生奠定了堅實的邏輯基礎(chǔ)。

現(xiàn)代邏輯發(fā)展動力主要來自于數(shù)學(xué)中的公理化運動。20世紀(jì)邏輯研究嚴(yán)重數(shù)學(xué)化,發(fā)展出來的邏輯被恰當(dāng)?shù)胤Q為“數(shù)理邏輯”,它增強(qiáng)了邏輯研究的深度,使邏輯學(xué)的發(fā)展繼古希臘邏輯、歐洲中世紀(jì)邏輯之后進(jìn)入第三個高峰期,并且對整個現(xiàn)代科學(xué)特別是數(shù)學(xué)、哲學(xué)、語言學(xué)和計算機(jī)科學(xué)產(chǎn)生了非常重要的影響。

2、邏輯學(xué)的發(fā)展

2.1邏輯學(xué)的大體分類

邏輯學(xué)是一門研究思維形式及思維規(guī)律的科學(xué)。從17世紀(jì)德國數(shù)學(xué)家、哲學(xué)家萊布尼茲(G.LEibniz)提出數(shù)理邏輯以來,隨著人工智能的一步步發(fā)展的需求,各種各樣的邏輯也隨之產(chǎn)生。邏輯學(xué)大體上可分為經(jīng)典邏輯、非經(jīng)典邏輯和現(xiàn)代邏輯。經(jīng)典邏輯與模態(tài)邏輯都是二值邏輯。多值邏輯,是具有多個命題真值的邏輯,是向模糊邏輯的逼近。模糊邏輯是處理具有模糊性命題的邏輯。概率邏輯是研究基于邏輯的概率推理。

2.2泛邏輯的基本原理

當(dāng)今人工智能深入發(fā)展遇到的一個重大難題就是專家經(jīng)驗知識和常識的推理?,F(xiàn)代邏輯迫切需要有一個統(tǒng)一可靠的,關(guān)于不精確推理的邏輯學(xué)作為它們進(jìn)一步研究信息不完全情況下推理的基礎(chǔ)理論,進(jìn)而形成一種能包容一切邏輯形態(tài)和推理模式的,靈活的,開放的,自適應(yīng)的邏輯學(xué),這便是柔性邏輯學(xué)。而泛邏輯學(xué)就是研究剛性邏輯學(xué)(也即數(shù)理邏輯)和柔性邏輯學(xué)共同規(guī)律的邏輯學(xué)。

泛邏輯是從高層研究一切邏輯的一般規(guī)律,建立能包容一切邏輯形態(tài)和推理模式,并能根據(jù)需要自由伸縮變化的柔性邏輯學(xué),剛性邏輯學(xué)將作為一個最小的內(nèi)核存在其中,這就是提出泛邏輯的根本原因,也是泛邏輯的最終歷史使命。

3、邏輯學(xué)在人工智能學(xué)科的研究方面的應(yīng)用

邏輯方法是人工智能研究中的主要形式化工具,邏輯學(xué)的研究成果不但為人工智能學(xué)科的誕生奠定了理論基礎(chǔ),而且它們還作為重要的成分被應(yīng)用于人工智能系統(tǒng)中。

3.1經(jīng)典邏輯的應(yīng)用

人工智能誕生后的20年間是邏輯推理占統(tǒng)治地位的時期。1963年,紐厄爾、西蒙等人編制的“邏輯理論機(jī)”數(shù)學(xué)定理證明程序(LT)。在此基礎(chǔ)之上,紐厄爾和西蒙編制了通用問題求解程序(GPS),開拓了人工智能“問題求解”的一大領(lǐng)域。經(jīng)典數(shù)理邏輯只是數(shù)學(xué)化的形式邏輯,只能滿足人工智能的部分需要。

3.2非經(jīng)典邏輯的應(yīng)用

(1)不確定性的推理研究

人工智能發(fā)展了用數(shù)值的方法表示和處理不確定的信息,即給系統(tǒng)中每個語句或公式賦一個數(shù)值,用來表示語句的不確定性或確定性。比較具有代表性的有:1976年杜達(dá)提出的主觀貝葉斯模型,1978年查德提出的可能性模型,1984年邦迪提出的發(fā)生率計算模型,以及假設(shè)推理、定性推理和證據(jù)空間理論等經(jīng)驗性模型。

歸納邏輯是關(guān)于或然性推理的邏輯。在人工智能中,可把歸納看成是從個別到一般的推理。借助這種歸納方法和運用類比的方法,計算機(jī)就可以通過新、老問題的相似性,從相應(yīng)的知識庫中調(diào)用有關(guān)知識來處理新問題。

(2)不完全信息的推理研究

常識推理是一種非單調(diào)邏輯,即人們基于不完全的信息推出某些結(jié)論,當(dāng)人們得到更完全的信息后,可以改變甚至收回原來的結(jié)論。非單調(diào)邏輯可處理信息不充分情況下的推理。20世紀(jì)80年代,賴特的缺省邏輯、麥卡錫的限定邏輯、麥克德莫特和多伊爾建立的NML非單調(diào)邏輯推理系統(tǒng)、摩爾的自認(rèn)知邏輯都是具有開創(chuàng)性的非單調(diào)邏輯系統(tǒng)。常識推理也是一種可能出錯的不精確的推理,即容錯推理。

此外,多值邏輯和模糊邏輯也已經(jīng)被引入到人工智能中來處理模糊性和不完全性信息的推理。多值邏輯的三個典型系統(tǒng)是克林、盧卡西維茲和波克萬的三值邏輯系統(tǒng)。模糊邏輯的研究始于20世紀(jì)20年代盧卡西維茲的研究。1972年,扎德提出了模糊推理的關(guān)系合成原則,現(xiàn)有的絕大多數(shù)模糊推理方法都是關(guān)系合成規(guī)則的變形或擴(kuò)充。

4、人工智能——當(dāng)代邏輯發(fā)展的動力

現(xiàn)代邏輯創(chuàng)始于19世紀(jì)末葉和20世紀(jì)早期,其發(fā)展動力主要來自于數(shù)學(xué)中的公理化運動。21世紀(jì)邏輯發(fā)展的主要動力來自哪里?筆者認(rèn)為,計算機(jī)科學(xué)和人工智能將至少是21世紀(jì)早期邏輯學(xué)發(fā)展的主要動力源泉,并將由此決定21世紀(jì)邏輯學(xué)的另一幅面貌。由于人工智能要模擬人的智能,它的難點不在于人腦所進(jìn)行的.各種必然性推理,而是最能體現(xiàn)人的智能特征的能動性、創(chuàng)造性思維,這種思維活動中包括學(xué)習(xí)、抉擇、嘗試、修正、推理諸因素。例如,選擇性地搜集相關(guān)的經(jīng)驗證據(jù),在不充分信息的基礎(chǔ)上做出嘗試性的判斷或抉擇,不斷根據(jù)環(huán)境反饋調(diào)整、修正自己的行為,由此達(dá)到實踐的成功。于是,邏輯學(xué)將不得不比較全面地研究人的思維活動,并著重研究人的思維中最能體現(xiàn)其能動性特征的各種不確定性推理,由此發(fā)展出的邏輯理論也將具有更強(qiáng)的可應(yīng)用性。

5、結(jié)語

人工智能的產(chǎn)生與發(fā)展和邏輯學(xué)的發(fā)展密不可分。

一方面我們試圖找到一個包容一切邏輯的泛邏輯,使得形成一個完美統(tǒng)一的邏輯基礎(chǔ);另一方面,我們還要不斷地爭論、更新、補(bǔ)充新的邏輯。如果二者能夠有機(jī)地結(jié)合,將推動人工智能進(jìn)入一個新的階段。概率邏輯大都是基于二值邏輯的,目前許多專家和學(xué)者又在基于其他邏輯的基礎(chǔ)上研究概率推理,使得邏輯學(xué)盡可能滿足人工智能發(fā)展的各方面的需要。就目前來說,一個新的泛邏輯理論的發(fā)展和完善需要一個比較長的時期,那何不將“百花齊放”與“一統(tǒng)天下”并行進(jìn)行,各自發(fā)揮其優(yōu)點,為人工智能的發(fā)展做出貢獻(xiàn)。目前,許多制約人工智能發(fā)展的因素仍有待于解決,技術(shù)上的突破,還有賴于邏輯學(xué)研究上的突破。在對人工智能的研究中,我們只有重視邏輯學(xué),努力學(xué)習(xí)與運用并不斷深入挖掘其基本內(nèi)容,拓寬其研究領(lǐng)域,才能更好地促進(jìn)人工智能學(xué)科的發(fā)展。

人工智能學(xué)習(xí)心得【篇11】

人,沒有熊一樣的力量,卻能把熊關(guān)進(jìn)籠子,這籠子的鑰匙,叫智慧。

人類一直在思考如何讓自然界的其它事物為自己所用,而不是只想著如何獲取食物來填飽肚子,人類之所以會凌駕于食物鏈頂端,就在于對于資源的使用。為了減輕胃的消化負(fù)擔(dān),人類開始學(xué)會使用火,讓蛋白質(zhì)在進(jìn)入胃之前就變質(zhì)而變得更好消化易于吸收。經(jīng)歷了漫長的手工制造業(yè)歷程,為了提高生產(chǎn)效率,也為了減輕工人手工勞作的負(fù)擔(dān),人們開始了工業(yè)革命,無數(shù)的機(jī)器流水線取代了效率低下的廉價勞動力,也正是從此刻起,人類使用資源的能力有了質(zhì)的發(fā)展,由使用已有資源,到創(chuàng)造新的資源。第一臺計算機(jī)應(yīng)運而生,人類開啟了無限創(chuàng)造的時代。時至今日,計算機(jī)技術(shù)幾乎延伸到了生活的每個領(lǐng)域,甚至成了人們的生活必需品。計算機(jī)能幫助人們完成人類不可能完成的計算,但一直致力于創(chuàng)造的人們當(dāng)然不會停止對計算機(jī)的要求。人們不光需要計算機(jī)做人類做不了的計算,還漸漸開始要求計算機(jī)做人類能做的事,這便催生了人工智能。人類就是這樣一步步用自己的智慧讓自己過上傻瓜一樣的生活。

人工智能目前還沒有在人們生活中普及,但是已經(jīng)出現(xiàn)萌芽。最典型是的一些語音識別系統(tǒng),如蘋果公司的Siri可能是目前人們接觸最多的基于人工智能和云計算技術(shù)的產(chǎn)品,相信這種人機(jī)交互系統(tǒng)的雛形經(jīng)過時間的磨練會在未來形成一套完善的從界面到內(nèi)核的智能體系。在社會生活方面,與數(shù)字圖像處理技術(shù)緊密結(jié)合的人工智能已經(jīng)開始應(yīng)用于攝像頭的圖像捕捉和識別,而模式識別技術(shù)的發(fā)展則使得人工智能在更廣闊的領(lǐng)域得以實現(xiàn)成為了可能。一些大公司在人工智能領(lǐng)域的.投入和研究對于推動人工智能的發(fā)展起到了很大的作用,最值得一提的就是谷歌。谷歌的免費搜索表面上是為了方便人們的查詢,但這款搜索引擎推出的初衷,就是為了幫助人工智能的深度學(xué)習(xí),通過上億的用戶一次又一次地查詢,來鍛煉人工智能的學(xué)習(xí)能力,由于我的水平還很低,對于深度學(xué)習(xí)還不敢妄自拽測。但是,近年來谷歌公司在人工智能方面的突破一項接著一項,為人們熟知的便是智能汽車。不得不說,人工智能想要進(jìn)一步發(fā)展,必須依靠這些大公司的研究和不斷推廣,由經(jīng)濟(jì)促創(chuàng)新。

縱覽時間長河,很多新生的技術(shù)在一開始都是舉步維艱的,人工智能也不例外,但幸運的是,人們接受和學(xué)會使用新技術(shù)所需要的時間越來越短,對于人工智能產(chǎn)品的投入市場是有益的。因此,在我看來,將已開發(fā)出來但還需完善的人工智能產(chǎn)品投放市場,使其進(jìn)入人們的生活只是時間的問題,但要想真正掌握人工智能,開發(fā)出完全符合研發(fā)人想法的智能產(chǎn)品還需各方面的努力。至于現(xiàn)在討論熱烈的“人工智能統(tǒng)治人類”的問題,我的看法是,人工智能的開發(fā)和應(yīng)用是需要監(jiān)管的,但并不能阻止人工智能即將影響世界的趨勢。

由于我對于人工智能的理解還只是皮毛,對于文中出現(xiàn)的紕漏和錯誤還希望老師指正!

2269821