2022初三數(shù)學(xué)備戰(zhàn)中考復(fù)習(xí)知識(shí)點(diǎn)大全
2022初三數(shù)學(xué)備戰(zhàn)中考復(fù)習(xí)知識(shí)點(diǎn)大全
高學(xué)習(xí)效率并非一朝一夕之事,需要長(zhǎng)期的探索和積累。前人的經(jīng)驗(yàn)是可以借鑒的,但必須充分結(jié)合自己的特點(diǎn)。影響學(xué)習(xí)效率的因素,有學(xué)習(xí)之內(nèi)的,但更多的因素在學(xué)習(xí)之外。下面是小編為大家準(zhǔn)備2022初三數(shù)學(xué)備戰(zhàn)中考復(fù)習(xí)知識(shí)點(diǎn)大全,歡迎參閱。
2022初三數(shù)學(xué)備戰(zhàn)中考復(fù)習(xí)知識(shí)點(diǎn)
2022初三數(shù)學(xué)備戰(zhàn)中考復(fù)習(xí)知識(shí)點(diǎn)
有理數(shù)、整式的加減、一元一次方程、圖形的初步認(rèn)識(shí)。
(1)有理數(shù):是初中數(shù)學(xué)的基礎(chǔ)內(nèi)容,中考試題中分值約為3-6分,多以選擇題,填空題,計(jì)算題的形式出現(xiàn),難易度屬于簡(jiǎn)單。
【考察內(nèi)容】復(fù)數(shù)以及混合運(yùn)算(期中、期末必考計(jì)算)數(shù)軸、相反數(shù)、絕對(duì)值和倒數(shù)(選擇、填空)。
(2)整式的加減:中考試題中分值約為4分,題型以選擇和填空題為主,難易度屬于易。
【考察內(nèi)容】
①整式的概念和簡(jiǎn)單的運(yùn)算,主要是同類項(xiàng)的概念和化簡(jiǎn)求值
②完全平方公式,平方差公式的幾何意義
③利用提公因式法和公式法分解因式。
(3)一元一次方程:是初一學(xué)習(xí)重點(diǎn)內(nèi)容,主要學(xué)習(xí)內(nèi)容有(歸納、總結(jié)、延伸)應(yīng)用題思維、步驟、文字題,根據(jù)已知條件求未知。中考分值約為1-3分,題型主要以選擇和填空題為主,極少出現(xiàn)簡(jiǎn)答題,難易度為易。
【考察內(nèi)容】
①方程及方程解的概念
②根據(jù)題意列一元一次方程
③解一元一次方程。題型:追擊、相遇、時(shí)間速度路程的關(guān)系、打折銷售、利潤(rùn)公式。
(4)幾何:角和線段,為下冊(cè)學(xué)三角形打基礎(chǔ)
相交線和平行線、實(shí)數(shù)、平面直角坐標(biāo)系、二元一次方程組、不等式和不等式組和數(shù)據(jù)庫(kù)的收集整理與描述。
(1)相交線和平行線:相交線和平行線是歷年中考中常見的考點(diǎn)。通常以填空,選擇題形式出現(xiàn)。分值為3-4分,難易度為易。
【考察內(nèi)容】
①平行線的性質(zhì)(公理)
②平行線的判別方法
③構(gòu)造平行線,利用平行線的性質(zhì)解決問題。
(2)平面直角坐標(biāo)系:中考試題中分值約為3-4分,題型以選擇,填空為主,難易度屬于易。
【考察內(nèi)容】
①考察平面直角坐標(biāo)系內(nèi)點(diǎn)的坐標(biāo)特征
②函數(shù)自變量的取值范圍和球函數(shù)的值
③考察結(jié)合圖像對(duì)簡(jiǎn)單實(shí)際問題中的函數(shù)關(guān)系進(jìn)行分析。
(3)二元一次方程組:中考分值約為3-6分,題型主要以選擇,解答為主,難易度為中。
【考察內(nèi)容】
①方程組的解法,解方程組
②根據(jù)題意列二元一次方程組解經(jīng)濟(jì)問題。
(4)不等式和不等式組:中考試題中分值約為3-8分,選擇,填空,解答題為主。
【考察內(nèi)容:】
①一元一次不等式(組)的解法,不等式(組)解集的數(shù)軸表示,不等式(組)的整數(shù)解等,題型以選擇,填空為主。
②列不等式(組)解決經(jīng)濟(jì)問題,調(diào)配問題等,主要以解答題為主。
③留意不等式(組)和函數(shù)圖像的結(jié)合問題。
(5)數(shù)據(jù)庫(kù)的收集整理與描述
分值一般在6-10分,題型近幾年主要以解答題出現(xiàn),偶爾以選擇填空出現(xiàn)。難易度為中。
【考察內(nèi)容】
①常見統(tǒng)計(jì)圖和平均數(shù),眾數(shù),中位數(shù)的計(jì)算分析。
②方差,極差的應(yīng)用分析
③與現(xiàn)實(shí)生活有關(guān)的實(shí)際問題的考察熱點(diǎn)。題目注重考查統(tǒng)計(jì)學(xué)的知識(shí)分析和數(shù)據(jù)處理。
三角形、全等三角形、軸對(duì)稱、整式的乘除與因式分解、分式。
(1)三角形:是初中數(shù)學(xué)的基礎(chǔ),中考命題中的重點(diǎn)。中考試題分值約為18-24分,以填空,選擇,解答題,也會(huì)出現(xiàn)一些證明題目。
【考查內(nèi)容】
①三角形的性質(zhì)和概念,三角形內(nèi)角和定理,三邊關(guān)系,以及三角形全等的性質(zhì)與判定。
②三角形全等融入平行四邊形的證明
③三角形運(yùn)動(dòng),折疊,旋轉(zhuǎn),拼接形成的新數(shù)學(xué)問題
④等腰三角形的性質(zhì)與判定,面積,周長(zhǎng)等
⑤直角三角形的性質(zhì),勾股定理是重點(diǎn)
⑥三角形與圓的相關(guān)位置關(guān)系
⑦三角形中位線的性質(zhì)應(yīng)用
(2)全等三角形
(3)軸對(duì)稱:圖形的軸對(duì)稱是中考題的新題型,熱點(diǎn)題型。分值一般為3-4分,題型以填空,選擇,作圖為主,偶爾也會(huì)出現(xiàn)解答題。
【考察內(nèi)容】
①軸對(duì)稱和軸對(duì)稱圖形的性質(zhì)判別。
②注意鏡面對(duì)稱與實(shí)際問題的解決。
(4)整式的乘除與因式分解:中考試題中分值約為4分,題型以選擇,填空為主,難易度屬于易。
【考察內(nèi)容】
①整式的概念和簡(jiǎn)單的運(yùn)算,主要是同類項(xiàng)的概念和化簡(jiǎn)求值
②完全平方公式,平方差公司的幾何意義
③利用提公因式法和公式法分解因式。
(5)分式:中考試題中分值約為6-8分,主要以填空,簡(jiǎn)答計(jì)算題型出現(xiàn),難易度屬于中。
【考察內(nèi)容】
①分式的概念,性質(zhì),意義
②分式的運(yùn)算,化簡(jiǎn)求值。
③列分式方程解決實(shí)際問題。
二次根式、勾股定理、四邊形、一次函數(shù)和數(shù)據(jù)的分析。
(1)二次根式
(2)勾股定理:解直角三角形,解直角三角形的知識(shí)是近幾年各地中考命題的熱點(diǎn)之一,考察題型為選擇題,填空題,應(yīng)用題為主,分值一般8-12分,難易度為難。
【考察內(nèi)容】
①常見銳角的三角函數(shù)值的計(jì)算
②根據(jù)圖形計(jì)算距離,高度,角度的應(yīng)用題
③根據(jù)題中給出的信息構(gòu)建圖形,建立數(shù)學(xué)模型,然后用解直角三角形的知識(shí)解決問題。
(3)四邊形:初中數(shù)學(xué)中考中的重點(diǎn)內(nèi)容之一,分值一般為10-14分,題型以選擇,填空,解答證明或融合在綜合題目中為主,難易度為中。
【考察內(nèi)容】
①多邊形的內(nèi)角和,外角和等問題
②圖形的鑲嵌問題
③平行四邊形,矩形,菱形,正方形,等腰梯形的性質(zhì)和判定。
(4)一次函數(shù):一次函數(shù)圖像與性質(zhì)是中考必考的內(nèi)容之一。中考試題中分值約為10分左右題型多樣,形式靈活,綜合應(yīng)用性強(qiáng)。甚至有存在探究題目出現(xiàn)。
【考察內(nèi)容】
①會(huì)畫一次函數(shù)的圖像,并掌握其性質(zhì)。
②會(huì)根據(jù)已知條件,利用待定系數(shù)法確定一次函數(shù)的解析式。
③能用一次函數(shù)解決實(shí)際問題。
④考察一次函數(shù)與二元一次方程組,一元一次不等式的關(guān)系。
(5)數(shù)據(jù)的分析
二次函數(shù)、一元二次方程、旋轉(zhuǎn)、圓和概率初步。
(1)二次函數(shù):二次函數(shù)的圖像和性質(zhì)是中考數(shù)學(xué)命題的熱點(diǎn),難點(diǎn)。試題難度一般為難。常見選擇,填空題分值為3-5分,綜合題分值為10-12分。
【考察內(nèi)容】
①能通過對(duì)實(shí)際問題情境的分析確定二次函數(shù)的表達(dá)式,并體會(huì)二次函數(shù)的意義。
②能用數(shù)形結(jié)合,歸納等熟悉思想,根據(jù)二次函數(shù)的表達(dá)式(圖像)確定二次的開口方向,對(duì)稱軸和頂點(diǎn)的坐標(biāo),并獲得更多信息。
③綜合運(yùn)用方程,幾何圖形,函數(shù)等知識(shí)點(diǎn)解決問題。
(2)一元二次方程:中考分值約為3-5分,題型主要以選擇,填空為主,極少出現(xiàn)簡(jiǎn)答,難易度為易。
【考察內(nèi)容】
①方程及方程解的概念
②根據(jù)題意列一元一次方程
③解一元一次方程。
(3)旋轉(zhuǎn):圖形的平移,旋轉(zhuǎn)是中考題的新題型,熱點(diǎn)題型,在試題比重,逐年上升。分值一般為5-8分,題型以填空,選擇,作圖為主,偶爾也會(huì)出現(xiàn)解答題。
【考察內(nèi)容】
①中心對(duì)稱和中心對(duì)稱圖形的性質(zhì)
②旋轉(zhuǎn)和平移的性質(zhì)。
(4)圓:圓和圓的有關(guān)性質(zhì)與圓的有關(guān)計(jì)算是近幾年各地中考命題的重點(diǎn)內(nèi)容。題型以填空題,選擇題和解答題為主,也有以閱讀理解,條件開放,結(jié)論開放探索題作為新的題型,分值一般是6-12分,難易度為中。
【考察內(nèi)容】
①圓的有關(guān)性質(zhì)的應(yīng)用。垂徑定理是重點(diǎn)。
②直線和圓,圓和圓的位置關(guān)系的判定及應(yīng)用。
③弧長(zhǎng),扇形面積,圓柱,圓錐的側(cè)面積和全面積的計(jì)算
④圓與相似三角形,三角函數(shù)的綜合運(yùn)用以及有關(guān)的開放題,探索題。
(5)概率初步:分值一般3-6分,題型以選擇,填空常見,更多以解答題目為主,難易度為中。
【考察內(nèi)容】
①簡(jiǎn)答事件的概率求解,圖表法和數(shù)形圖法
②利用概率解決實(shí)際,公平性問題等
③注意概率知識(shí)與方程相結(jié)合的綜合性試題,選材貼近生活,越來越新。
初三下冊(cè)
反比例函數(shù)、相似、銳角三角函數(shù)和投影與視圖。
(1)反比例函數(shù):反比例函數(shù)的圖像和性質(zhì)是中考數(shù)學(xué)命題的重要內(nèi)容,試題新穎,題型靈活多樣,所占分值約為3-8分,難易度屬于難。
【考察內(nèi)容】
①會(huì)畫反比例函數(shù)的圖像,掌握基本性質(zhì)。
②能根據(jù)條件確定反比例函數(shù)的表達(dá)式。
③能用反比例函數(shù)解決實(shí)際問題。
(2)相似:圖形的形似是平面幾何中極為重要的內(nèi)容,是中考數(shù)學(xué)中的重點(diǎn)考察內(nèi)容。一般分值約為6-12分,題型以選擇,填空,解答綜合題目為主,難易度屬于難。
【考察內(nèi)容】
①相似三角形的性質(zhì)和判別方法,是重點(diǎn)。
②相似多邊形的認(rèn)識(shí),黃金分割的應(yīng)用。
③相似形與三角形,平行四邊形的綜合性題目是難點(diǎn)。
(3)銳角三角函數(shù)
(4)投影與視圖:分值一般為3-6分,試題以填空,選擇,解答的形式出現(xiàn)。
【考察內(nèi)容】
①常見幾何體的三視圖
②常見幾何體的展開和折疊,展開和折疊是考試的熱點(diǎn),值得注意。
③利用相似結(jié)合平行投影和中心投影解決實(shí)際問題。
(不同地區(qū)分值不同,可供參考)
選擇題:3分一個(gè),共14個(gè),總分42分。
填空題:3分一個(gè),共5個(gè),總分15分。
解答題:共7題,總分63分。
(一)線段、角的計(jì)算與證明問題
中考中的簡(jiǎn)答題一般是分為兩到三部分的。第一部分基本上都是簡(jiǎn)單題和中檔題,目的在于考查基礎(chǔ)。第二部分第二部分往往就是開始拉分的中難題了。
(二)列方程(組)解決應(yīng)用問題
在中考中,方程是初中數(shù)學(xué)當(dāng)中最重要的部分,所以也是中考必考內(nèi)容。從近年來中考來看,結(jié)合時(shí)事熱點(diǎn)考的比較多,所以還需要考生有一些實(shí)際生活經(jīng)驗(yàn)。
(三)閱讀理解問題
閱讀理解問題是中考中的一個(gè)亮點(diǎn)。閱讀理解往往是先給一個(gè)材料或介紹一個(gè)超綱的知識(shí)或給出一個(gè)針對(duì)某一種題目的解法,然后再給出條件出題。
(四)多種函數(shù)交叉綜合問題
初中接觸的函數(shù)主要有一次函數(shù)、二次函數(shù)和反比例函數(shù)。這類題目本身并不會(huì)太難,很少作為壓軸題目出現(xiàn),一般都是作為一道中檔次題目出現(xiàn)來考查學(xué)生對(duì)函數(shù)的掌握。
(五)動(dòng)態(tài)幾何
從歷年的中考來看,動(dòng)態(tài)幾何往往作為壓軸的題目出現(xiàn),得分率也是最低的。動(dòng)態(tài)幾何一般分為兩類,一類是代數(shù)綜合方面,在坐標(biāo)系中,動(dòng)直線一般是用多種函數(shù)交叉求解。另一類是幾何綜合題,在梯形、矩形和三角形中設(shè)立動(dòng)點(diǎn),考查學(xué)生的綜合分析能力。
(六)圖形位置關(guān)系
中學(xué)數(shù)學(xué)當(dāng)中,圖形位置關(guān)系主要包括點(diǎn)、線、三角形、矩形和正方形及它們之間的關(guān)系。在中考中會(huì)包括在函數(shù)、坐標(biāo)系及幾何題中,其中最重要的是三角形的各種問題。
軸對(duì)稱知識(shí)點(diǎn)
1.如果一個(gè)圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形;這條直線叫做對(duì)稱軸。
2.軸對(duì)稱圖形的對(duì)稱軸,是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。
3.角平分線上的點(diǎn)到角兩邊距離相等。
4.線段垂直平分線上的任意一點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等。
5.與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。
6.軸對(duì)稱圖形上對(duì)應(yīng)線段相等、對(duì)應(yīng)角相等。
7.畫一圖形關(guān)于某條直線的軸對(duì)稱圖形的步驟:找到關(guān)鍵點(diǎn),畫出關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn),按照原圖順序依次連接各點(diǎn)。
8.點(diǎn)(x,y)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)為(x,-y)
點(diǎn)(x,y)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)為(-x,y)
點(diǎn)(x,y)關(guān)于原點(diǎn)軸對(duì)稱的點(diǎn)的坐標(biāo)為(-x,-y)
9.等腰三角形的性質(zhì):等腰三角形的兩個(gè)底角相等,(等邊對(duì)等角)
等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡(jiǎn)稱為三線合一。
10.等腰三角形的判定:等角對(duì)等邊。
11.等邊三角形的三個(gè)內(nèi)角相等,等于60,
12.等邊三角形的判定:三個(gè)角都相等的三角形是等腰三角形。
有一個(gè)角是60的等腰三角形是等邊三角形
有兩個(gè)角是60的三角形是等邊三角形。
13.直角三角形中,30角所對(duì)的直角邊等于斜邊的一半。
不等式
1.掌握不等式的基本性質(zhì),并會(huì)靈活運(yùn)用:
(1)不等式的兩邊加上(或減去)同一個(gè)整式,不等號(hào)的方向不變,即:如果a>b,那么a+c>b+c,a-c>b-c。
(2)不等式的兩邊都乘以(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變,即:如果a>b,并且c>0,那么ac>bc。
(3)不等式的兩邊都乘以(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變,即:如果a>b,并且c<0,那么ac
2.比較大?。?a、b分別表示兩個(gè)實(shí)數(shù)或整式)
一般地:
如果a>b,那么a-b是正數(shù);反過來,如果a-b是正數(shù),那么a>b;
如果a=b,那么a-b等于0;反過來,如果a-b等于0,那么a=b;
如果a
即:a>b<===>a-b>0;a=b<===>a-b=0;aa-b<0。
3.不等式的解集:能使不等式成立的未知數(shù)的值,叫做不等式的解;一個(gè)不等式的所有解,組成這個(gè)不等式的解集;求不等式的解集的過程,叫做解不等式。
4.不等式的解集在數(shù)軸上的表示:用數(shù)軸表示不等式的解集時(shí),要確定邊界和方向:①邊界:有等號(hào)的是實(shí)心圓圈,無等號(hào)的是空心圓圈;②方向:大向右,小向左。
一元一次方程的解法
1.一般方法:
①去分母:去分母是指等式兩邊同時(shí)乘以分母的最小公倍數(shù)。
②去括號(hào):括號(hào)前是“+”,把括號(hào)和它前面的“+”去掉后,原括號(hào)里各項(xiàng)的符號(hào)都不改變。括號(hào)前是“-”,把括號(hào)和它前面的"-"去掉后,原括號(hào)里各項(xiàng)的符號(hào)都要改變。(改成與原來相反的符號(hào)。
③移項(xiàng):把方程兩邊都加上(或減去)同一個(gè)數(shù)或同一個(gè)整式,就相當(dāng)于把方程中的某些項(xiàng)改變符號(hào)后,從方程的一邊移到另一邊,這樣的變形叫做移項(xiàng)。
④合并同類項(xiàng):通過合并同類項(xiàng)把一元一次方程式化為最簡(jiǎn)單的形式:ax=b(a≠0)。
⑤系數(shù)化為1。
2.圖像法:一元一次方程ax+b=0(a≠0)的根就是它所對(duì)應(yīng)的一次函數(shù)f(x)=ax+b函數(shù)值為0時(shí),自變量x的值,即一次函數(shù)圖象與x軸交點(diǎn)的橫坐標(biāo)。
3.求根公式法:對(duì)于關(guān)于x的一元一次方程ax+b=0(a≠0),其求根公式為:x=-b/a。
整式
1.整式:整式為單項(xiàng)式和多項(xiàng)式的統(tǒng)稱,是有理式的一部分,在有理式中可以包含加,減,乘,除、乘方五種運(yùn)算,但在整式中除數(shù)不能含有字母。
2.乘法
(1)同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加。
(2)冪的乘方,底數(shù)不變,指數(shù)相乘。
(3)積的乘方,先把積中的每一個(gè)因數(shù)分別乘方,再把所得的冪相乘。
3.整式的除法
(1)同底數(shù)冪相除,底數(shù)不變,指數(shù)相減。
(2)任何不等于零的數(shù)的零次冪為1。
分?jǐn)?shù)的性質(zhì)
1.分?jǐn)?shù)中間的一條橫線叫做分?jǐn)?shù)線,分?jǐn)?shù)線上面的數(shù)叫做分子,分?jǐn)?shù)線下面的數(shù)叫做分母。讀作幾分之幾。
2.分?jǐn)?shù)可以表述成一個(gè)除法算式:如二分之一等于1除以2。其中,1分子等于被除數(shù),-分?jǐn)?shù)線等于除號(hào),2分母等于除數(shù),而0.5分?jǐn)?shù)值則等于商。
3.分?jǐn)?shù)還可以表述為一個(gè)比,例如;二分之一等于1:2,其中1分子等于前項(xiàng),—分?jǐn)?shù)線等于比號(hào),2分母等于后項(xiàng),而0.5分?jǐn)?shù)值則等于比值。
4.當(dāng)分子與分母同時(shí)乘或除以相同的數(shù)(0除外),分?jǐn)?shù)值不會(huì)變化。因此,每一個(gè)分?jǐn)?shù)都有無限個(gè)與其相等的分?jǐn)?shù)。利用此性質(zhì),可進(jìn)行約分與通分。
5.一個(gè)分?jǐn)?shù)不是有限小數(shù),就是無限循環(huán)小數(shù),像π等這樣的無限不循環(huán)小數(shù),是不可能用分?jǐn)?shù)代替的。
正負(fù)數(shù)加減法則順口溜
正正相加,和為正。
負(fù)負(fù)相加,和為負(fù)。
正減負(fù)來,得為正。
負(fù)減正來,得為負(fù)。
其余沒說,看大小。
誰(shuí)大就往,誰(shuí)邊倒。
一、該記的記,該背的背,不要以為理解了就行
有的同學(xué)認(rèn)為,數(shù)學(xué)不像英語(yǔ)、社政,要背單詞、背年代、背人名、地名,數(shù)學(xué)靠的是智慧、技巧和推理。我說你只講對(duì)了一半。數(shù)學(xué)同樣也離不開記憶。試想一下,小學(xué)的加、減、乘、除運(yùn)算要不是背熟了“乘法九九表”,你能順利地進(jìn)行運(yùn)算嗎?盡管你理解了乘法是相同加數(shù)的和的運(yùn)算,但你在做9×9時(shí)用九個(gè)9去相加得出81就太不合算了。而用“九九八十一”得出就方便多了。同樣,是運(yùn)用大家熟記的法則做出來的。同時(shí),數(shù)學(xué)中還有大量的規(guī)定需要記憶,比如在化簡(jiǎn)二次根式時(shí)規(guī)定:“如果沒有特別說明,本章根號(hào)內(nèi)的字母都是正數(shù)?!?等等。因此,我覺得數(shù)學(xué)更像游戲,它有許多游戲規(guī)則(即數(shù)學(xué)中的定義、法則、公式、定理等),誰(shuí)記住了這些游戲規(guī)則,誰(shuí)就能順利地做游戲;誰(shuí)違反了這些游戲規(guī)則,誰(shuí)就被判錯(cuò),罰下。因此,數(shù)學(xué)的定義、法則、公式、定理等一定要記熟,有些能背誦,朗朗上口。比如大家熟悉的“乘法公式、求根公式”“特殊角三角函數(shù)值”等,我看我們的同學(xué)有的背得出,有的就背不出。在這里,我向背不出的同學(xué)敲一敲警鐘,如果背不出這些公式,將會(huì)對(duì)今后的學(xué)習(xí)造成很大的麻煩,因?yàn)榻窈蟮膶W(xué)習(xí)將會(huì)大量地用到這些公式和數(shù)據(jù)。
對(duì)數(shù)學(xué)的定義、法則、公式、定理等,理解了的要記住,暫時(shí)不理解的也要記住,在記憶的基礎(chǔ)上、在應(yīng)用它們解決問題時(shí)再加深理解。打一個(gè)比方,數(shù)學(xué)的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打造不出家具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的家具。同樣,記不住數(shù)學(xué)的定義、法則、公式、定理就很難解數(shù)學(xué)題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數(shù)學(xué)題,甚至是解數(shù)學(xué)難題中得心應(yīng)手,左右逢源。
二、了解幾個(gè)重要的數(shù)學(xué)思想
1、“方程”的思想
數(shù)學(xué)是研究事物的空間形式和數(shù)量關(guān)系的,初中最重要的數(shù)量關(guān)系是等量關(guān)系,其次是不等量關(guān)系。最常見的等量關(guān)系就是“方程”。比如等速運(yùn)動(dòng)中,路程、速度和時(shí)間三者之間就有一種等量關(guān)系,可以建立一個(gè)相關(guān)等式:速度×?xí)r間=路程,在這樣的等式中,一般會(huì)有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過方程里的已知量求出未知量的過程就是解方程。我們?cè)谛W(xué)就已經(jīng)接觸過簡(jiǎn)易方程,而初一則比較系統(tǒng)地學(xué)習(xí)解一元一次方程,并總結(jié)出解一元一次方程的五個(gè)步驟。如果學(xué)會(huì)并掌握了這五個(gè)步驟,
任何一個(gè)一元一次方程都能順利地解出來。初二和初三我們學(xué)習(xí)了解一元二次方程、二元二次方程組、簡(jiǎn)單的三角方程;到了高中我們還將學(xué)習(xí)指數(shù)方程、對(duì)數(shù)方程、線性方程組、參數(shù)方程、極坐標(biāo)方程等。解這些方程的思維幾乎一致,都是通過一定的方法將它們轉(zhuǎn)化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五個(gè)步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恒,化學(xué)中的化學(xué)平衡式,現(xiàn)實(shí)中的大量實(shí)際應(yīng)用,都需要建立方程,通過解方程來求出結(jié)果。因此,同學(xué)們一定要將解一元一次方程和解一元二次方程學(xué)好,進(jìn)而為學(xué)好其它形式的方程打好基礎(chǔ)。
所謂的“方程”思想就是對(duì)于數(shù)學(xué)問題,特別是現(xiàn)實(shí)當(dāng)中碰到的未知量和已知量的錯(cuò)綜復(fù)雜的關(guān)系,善于用“方程”的觀點(diǎn)去構(gòu)建有關(guān)的方程,進(jìn)而用解方程的方法去解決它。
2、“數(shù)形結(jié)合”的思想
大千世界,“數(shù)”與“形”無處不在。任何事物,剝?nèi)ニ馁|(zhì)的方面,只剩下形狀和大小這兩個(gè)屬性,就交給數(shù)學(xué)去研究了。初中數(shù)學(xué)的兩個(gè)分支——代數(shù)和幾何,代數(shù)是研究“數(shù)”的,幾何是研究“形”的。但是,研究代數(shù)要借助“形”,研究幾何要借助“數(shù)”,“數(shù)形結(jié)合”是一種趨勢(shì),越學(xué)下去,“數(shù)”與 “形”越密不可分,到了高中,就出現(xiàn)了專門用代數(shù)方法去研究幾何問題的一門課,叫做“解析幾何”。在初三,建立平面直角坐標(biāo)系后,研究函數(shù)的問題就離不開圖象了。往往借助圖象能使問題明朗化,比較容易找到問題的關(guān)鍵所在,從而解決問題。在今后的數(shù)學(xué)學(xué)習(xí)中,要重視“數(shù)形結(jié)合”的思維訓(xùn)練,任何一道題,只要與“形”沾得上一點(diǎn)邊,就應(yīng)該根據(jù)題意畫出草圖來分析一番,這樣做,不但直觀,而且全面,整體性強(qiáng),容易找出切入點(diǎn),對(duì)解題大有益處。嘗到甜頭的人慢慢會(huì)養(yǎng)成一種“數(shù)形結(jié)合”的好習(xí)慣。
3、“對(duì)應(yīng)”的思想
“對(duì)應(yīng)”的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對(duì)應(yīng)一個(gè)抽象的數(shù)“1”,將兩只眼睛、一對(duì)耳環(huán)、雙胞胎對(duì)應(yīng)一個(gè)抽象的數(shù) “2”;隨著學(xué)習(xí)的深入,我們還將“對(duì)應(yīng)”擴(kuò)展到對(duì)應(yīng)一種形式,對(duì)應(yīng)一種關(guān)系,等等。比如我們?cè)诨?jiǎn)求值計(jì)算中,將式子中有關(guān)字母或某個(gè)整體的值,對(duì)應(yīng)代入,直接算出原式的結(jié)果。又比如我們到初三綜合學(xué)習(xí)了與圓有關(guān)的角,圓心角、圓周角、弦切角的數(shù)量關(guān)系必須“對(duì)應(yīng)”同一段弧才能成立。這就是運(yùn)用“對(duì)應(yīng)” 的思想和方法來解題。初二、初三我們還看到數(shù)軸上的點(diǎn)與實(shí)數(shù)之間的一一對(duì)應(yīng),直角坐標(biāo)平面上的點(diǎn)與一對(duì)有序?qū)崝?shù)之間的一一對(duì)應(yīng),函數(shù)與其圖象之間的對(duì)應(yīng)??傊?,“對(duì)應(yīng)”的思想在今后的學(xué)習(xí)中將會(huì)發(fā)揮越來越大的作用。
4、“轉(zhuǎn)化”的思想
解數(shù)學(xué)題最根本的途徑是“化難為易,化繁為簡(jiǎn),化未知為已知”,也就是把復(fù)雜繁難的數(shù)學(xué)問題通過一定的數(shù)學(xué)思維、方法和手段,逐漸將它轉(zhuǎn)變成一個(gè)大家熟知的簡(jiǎn)單的數(shù)學(xué)形式,然后通過大家所熟悉的數(shù)學(xué)運(yùn)算把它解決。
比如,我們學(xué)校要擴(kuò)大校園,需要向某村征地。而某村給了一塊形狀不規(guī)則的地,如何丈量它的面積呢?首先,使用適當(dāng)?shù)臏y(cè)量工具,依據(jù)一定的比例,將實(shí)際地形繪制成紙上圖形,然后將紙上圖形分割成若干塊梯形、長(zhǎng)方形、三角形,利用學(xué)過的面積計(jì)算方法,計(jì)算出這些圖形的面積之和,也就得到了這塊不規(guī)則地形的總面積。在這里,我們把無法計(jì)算的不規(guī)則圖形轉(zhuǎn)化成了可以計(jì)算的規(guī)則圖形,從而解決了土地丈量問題。另外,我們前面提到的各種多元方程、高次方程,利用“消元”、“降次”等方法,最終都可以把它們轉(zhuǎn)化成一元一次方程或一元二次方程,然后用已知的步驟或公式把它們解決。
“轉(zhuǎn)化和替代”的思想,是解題的最重要的思維習(xí)慣。面對(duì)難題,面對(duì)沒有見過的題,首先就要想到“轉(zhuǎn)化”,也總是能夠“轉(zhuǎn)化”的。平時(shí),要多留心老師是怎樣解題的,是怎樣“化難為易、化繁為簡(jiǎn)、化未知為已知”的。同學(xué)之間也應(yīng)多交流交流“成功轉(zhuǎn)化”的體會(huì),深入理解“轉(zhuǎn)化”的真正含義,切實(shí)掌握 “轉(zhuǎn)化”的思維和技巧。
三、自學(xué)能力的培養(yǎng)是深化學(xué)習(xí)的必由之路
在學(xué)習(xí)新概念、新運(yùn)算時(shí),老師們總是通過已有知識(shí)自然而然過渡到新知識(shí),水到渠成,亦即所謂“溫故而知新”。因此說,數(shù)學(xué)是一門能自學(xué)的學(xué)科,自學(xué)成才最典型的例子就是數(shù)學(xué)家華羅庚。
我們?cè)谡n堂上聽老師講解,不光是學(xué)習(xí)新知識(shí),更重要的是潛移默化老師的那種數(shù)學(xué)思維習(xí)慣,逐漸地培養(yǎng)起自己對(duì)數(shù)學(xué)的一種悟性。去年年底我去浙江教育學(xué)院開會(huì)時(shí),杭二中吳副校長(zhǎng)的一番話使我感觸良多。他說:我是教物理的,可是經(jīng)常外出,同學(xué)們物理學(xué)得好,不是我教出來的,而是他們自己悟出來的。當(dāng)然,吳副校長(zhǎng)是謙虛的,但他說明了一個(gè)道理,同學(xué)們不能被動(dòng)地學(xué)習(xí),而應(yīng)主動(dòng)地學(xué)習(xí)。一個(gè)班里幾十個(gè)學(xué)生,同一個(gè)老師教,差異那么大,這就是學(xué)習(xí)主動(dòng)性問題了。
自學(xué)能力越強(qiáng),悟性就越高。隨著年齡的增長(zhǎng),同學(xué)們的依賴性應(yīng)不斷減弱,而自學(xué)能力則應(yīng)不斷增強(qiáng)。因此,要養(yǎng)成預(yù)習(xí)的習(xí)慣。在老師講新課前,要能夠運(yùn)用自己所學(xué)過的已掌握的舊知識(shí)去預(yù)習(xí)新課,結(jié)合新課中的新規(guī)定去分析、理解新的學(xué)習(xí)內(nèi)容。由于數(shù)學(xué)知識(shí)的無矛盾性,你所學(xué)過的數(shù)學(xué)知識(shí)永遠(yuǎn)都是有用的,都是正確的,數(shù)學(xué)的進(jìn)一步學(xué)習(xí)只是加深拓廣而已。因此,以前的數(shù)學(xué)學(xué)得扎實(shí),就為以后的進(jìn)取奠定了基礎(chǔ),就不難自學(xué)新課。同時(shí),在預(yù)習(xí)新課時(shí),碰到什么自己解決不了的問題,帶著問題去聽老師講解新課,收獲之大是不言而喻的。有些同學(xué)為什么聽老師講新課時(shí)總有一種似懂非懂的感覺,或者是“一聽就懂、一做就錯(cuò)”,就是因?yàn)闆]有預(yù)習(xí),沒有帶著問題學(xué),沒有將“要我學(xué)”真正變?yōu)椤拔乙獙W(xué)”,力求把知識(shí)變?yōu)樽约旱?。學(xué)來學(xué)去,知識(shí)還是別人的。檢驗(yàn)數(shù)學(xué)學(xué)得好不好的標(biāo)準(zhǔn)就是會(huì)不會(huì)解題。聽懂并記憶有關(guān)的定義、法則、公式、定理,只是學(xué)好數(shù)學(xué)的必要條件,能獨(dú)立解題、解對(duì)題才是學(xué)好數(shù)學(xué)的標(biāo)志。
四、自信才能自強(qiáng)
在以往的歷次考試中,總會(huì)看見有些同學(xué)的試卷出現(xiàn)許多空白,即有好幾題根本沒有動(dòng)手去做。當(dāng)然,俗話說,藝高膽大,藝不高就膽不大。但是,做不出是一回事,沒有去做則是另一回事。稍為難一點(diǎn)的數(shù)學(xué)題都不是一眼就能看出它的解法和結(jié)果的。要去分析、探索、比比畫畫、寫寫算算,經(jīng)過迂回曲折的推理或演算,才顯露出條件和結(jié)論之間的某種聯(lián)系,整個(gè)思路才會(huì)明朗清晰起來。你都沒有動(dòng)手去做,又怎么知道自己不會(huì)做呢?即使是老師,拿到一道難題,也不能立即答復(fù)你。也同樣要先分析、研究,找到正確的思路后才向你講授。不敢去做稍為復(fù)雜一點(diǎn)的題(不一定是難題,有些題只不過是敘述多一點(diǎn)),是缺乏自信心的表現(xiàn)。在數(shù)學(xué)解題中,自信心是相當(dāng)重要的。要相信自己,只要不超出自己的知識(shí)范疇,不管哪道題,總是能夠用自己所學(xué)過的知識(shí)把它解出來。要敢于去做題,要善于去做題。這就叫做“在戰(zhàn)略上藐視敵人,在戰(zhàn)術(shù)上重視敵人”。
具體解題時(shí),一定要認(rèn)真審題,緊緊抓住題目的所有條件不放,不要忽略了任何一個(gè)條件,包括隱含條件。然后,從“所求”看“需知”,由“已知”看 “可知”,構(gòu)筑“可知”和“需知”之間的橋梁,形成從“已知”到“所求”的通道,使問題得以順利解決。其實(shí),一道題和一類題之間有一定的共性,可以想想這一類題的一般思路和一般解法,但更重要的是抓住這一道題的特殊性,抓住這一道題與這一類題不同的地方。數(shù)學(xué)的題目幾乎沒有相同的,總有一個(gè)或幾個(gè)條件不盡相同,因此思路和解題過程也不盡相同。有些同學(xué)老師講過的題會(huì)做,其它的題就不會(huì)做,只會(huì)依樣畫葫蘆,題目有些小小變化就干瞪眼,無從下手。當(dāng)然,做題先從哪兒下手是一件棘手的事,不一定找得準(zhǔn)。但是,做題一定要抓住其特殊性則絕對(duì)沒錯(cuò)。選擇一個(gè)或幾個(gè)條件作為解題的突破口,看由這個(gè)條件能得出什么,得出的越多越好,然后從中選擇與其它條件有關(guān)的、或與結(jié)論有關(guān)的、或與題目中的隱含條件有關(guān)的,進(jìn)行推理或演算。一般難題都有多種解法,所謂“條條大路通羅馬”。要相信利用這道題的條件,加上自己學(xué)過的那些知識(shí),一定能推出正確的結(jié)論。
數(shù)學(xué)題目是無限的,但數(shù)學(xué)的思想和方法卻是有限的。我們只要學(xué)好了有關(guān)的基礎(chǔ)知識(shí),掌握了必要的數(shù)學(xué)思想和方法,以不變應(yīng)萬(wàn)變,就能順利地對(duì)付那無限的題目。題目并不是做得越多越好,題海無邊,總也做不完,但不做也不行,關(guān)鍵是一個(gè)“度”。在一定的限度內(nèi),我還是鼓勵(lì)同學(xué)們要“多做多練,因?yàn)槭炷苌?多看多想,才能見多識(shí)廣。”這樣,通過強(qiáng)化的訓(xùn)練,培養(yǎng)自己良好的數(shù)學(xué)思維習(xí)慣,掌握正確的數(shù)學(xué)解題方法。那么到了中考的時(shí)候,由于題目類型見得多,所以能“觸類旁通,熟能生巧”,加快了速度,節(jié)省了時(shí)間,這一點(diǎn)在考試時(shí)間有限的中考時(shí)顯得特別重要。
解數(shù)學(xué)題目需要豐富的知識(shí),更需要自信心。沒有自信就會(huì)畏難,就會(huì)放棄;只有自信,才能勇往直前,才不會(huì)輕言放棄,才會(huì)加倍努力地學(xué)習(xí),才有希望攻克一道道難關(guān),到達(dá)成功的彼岸,創(chuàng)造屬于自己的輝煌的明天!
2022初三數(shù)學(xué)備戰(zhàn)中考復(fù)習(xí)知識(shí)點(diǎn)大全相關(guān)文章:
★ 九年級(jí)上冊(cè)數(shù)學(xué)復(fù)習(xí)資料備戰(zhàn)中考2021
★ 2021中考數(shù)學(xué)知識(shí)點(diǎn)梳理
★ 初三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)總結(jié)
★ 中考數(shù)學(xué)復(fù)習(xí)重要知識(shí)點(diǎn)大全
★ 初三數(shù)學(xué)中考復(fù)習(xí)重點(diǎn)章節(jié)知識(shí)點(diǎn)歸納
★ 2021中考數(shù)學(xué)知識(shí)點(diǎn)歸納
★ 人教版初三數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)資料備戰(zhàn)中考
★ 初三數(shù)學(xué)總復(fù)習(xí)知識(shí)點(diǎn)