數(shù)學八年級上冊期末知識點
知識可以產(chǎn)生力量,但成就能放出光彩;有人去體會知識的力量,但更多的人只去觀賞成就的光彩。下面是小編為大家精心整理的數(shù)學八年級上冊期末知識點,希望對大家有所幫助。
數(shù)學八年級上冊期末知識點
全等三角形
一、知識框架:
二、知識概念:
1.基本定義:
⑴全等形:能夠完全重合的兩個圖形叫做全等形.
⑵全等三角形:能夠完全重合的兩個三角形叫做全等三角形.
⑶對應頂點:全等三角形中互相重合的頂點叫做對應頂點.
⑷對應邊:全等三角形中互相重合的邊叫做對應邊.
⑸對應角:全等三角形中互相重合的角叫做對應角.
2.基本性質:
⑴三角形的穩(wěn)定性:三角形三邊的長度確定了,這個三角形的形狀、大小就全確定,這個性質叫做三角形的穩(wěn)定性.
⑵全等三角形的性質:全等三角形的對應邊相等,對應角相等.
3.全等三角形的判定定理:
⑴邊邊邊(SSS):三邊對應相等的兩個三角形全等.
⑵邊角邊(SAS):兩邊和它們的夾角對應相等的兩個三角形全等.
⑶角邊角(ASA):兩角和它們的夾邊對應相等的兩個三角形全等.
⑷角角邊(AAS):兩角和其中一個角的對邊對應相等的兩個三角形全等.
⑸斜邊、直角邊(HL):斜邊和一條直角邊對應相等的兩個直角三角形全等.
4.角平分線:
⑴畫法:
⑵性質定理:角平分線上的點到角的兩邊的距離相等.
⑶性質定理的逆定理:角的內部到角的兩邊距離相等的點在角的平分線上.
5.證明的基本方法:
⑴明確命題中的已知和求證.(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形等所隱含的邊角關系)
⑵根據(jù)題意,畫出圖形,并用數(shù)字符號表示已知和求證.
⑶經(jīng)過分析,找出由已知推出求證的途徑,寫出證明過程.
數(shù)學八年級上冊知識點
軸對稱
一、知識框架:
二、知識概念:
1.基本概念:
⑴軸對稱圖形:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形.
⑵兩個圖形成軸對稱:把一個圖形沿某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這條直線對稱.
⑶線段的垂直平分線:經(jīng)過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線.
⑷等腰三角形:有兩條邊相等的三角形叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角.
⑸等邊三角形:三條邊都相等的三角形叫做等邊三角形.
2.基本性質:
⑴對稱的性質:
①不管是軸對稱圖形還是兩個圖形關于某條直線對稱,對稱軸都是任何一對對應點所連線段的垂直平分線.
②對稱的圖形都全等.
⑵線段垂直平分線的性質:
①線段垂直平分線上的點與這條線段兩個端點的距離相等.
②與一條線段兩個端點距離相等的點在這條線段的垂直平分線上.
⑶關于坐標軸對稱的點的坐標性質
①點P(x,y)關于x軸對稱的點的坐標為P'(x,y).
②點P(x,y)關于y軸對稱的點的坐標為P"(x,y).
⑷等腰三角形的性質:
①等腰三角形兩腰相等.
②等腰三角形兩底角相等(等邊對等角).
③等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合.④等腰三角形是軸對稱圖形,對稱軸是三線合一(1條).
⑸等邊三角形的性質:
①等邊三角形三邊都相等.
②等邊三角形三個內角都相等,都等于60°
③等邊三角形每條邊上都存在三線合一.
④等邊三角形是軸對稱圖形,對稱軸是三線合一(3條).
3.基本判定:
⑴等腰三角形的判定:
①有兩條邊相等的三角形是等腰三角形.
②如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊).
⑵等邊三角形的判定:
①三條邊都相等的三角形是等邊三角形.
②三個角都相等的三角形是等邊三角形.
③有一個角是60°的等腰三角形是等邊三角形.
4.基本方法:
⑴做已知直線的垂線:
⑵做已知線段的垂直平分線:
⑶作對稱軸:連接兩個對應點,作所連線段的垂直平分線.
⑷作已知圖形關于某直線的對稱圖形:
⑸在直線上做一點,使它到該直線同側的兩個已知點的距離之和最短.
數(shù)學八年級期末知識點
整式的乘除與分解因式
一、知識框架:
二、知識概念:
1.基本運算:
⑴同底數(shù)冪的乘法
⑵冪的乘方
⑶積的乘方
2.計算公式:
⑴平方差公式
⑵完全平方公式
3.因式分解:把一個多項式化成幾個整式的積的形式,這種變形叫做把這個式子因式分解.
4.因式分解方法:
⑴提公因式法:找出公因式.
⑵公式法:
①平方差公式
八年級數(shù)學學習方法
1、有準備地進入每一堂課,帶著興趣,帶著問題,帶著目的聽課。準備什么呢就是根據(jù)課程表的安排,有針對性地預習弱項課程,預習時要弄清下一節(jié)課的內容,其中哪些是清楚的,哪些是模糊的,哪些是不懂的,由此確定出聽課的重點。課后進行總結,歸納出所講知識的框架,然后做相關練習。
2、按部就班,平時學習不應貪快,要一章一章過關,不要輕易留下不明白或者理解不深刻的問題。
3、學習,“習”的作用決定了學習結果是否有好的成效。每次聽完課后,閱讀一些相關的輔導資料,做一些相關的習題?,F(xiàn)在的輔導資料很多,哪一種好呢哪一種適合自己的情況在書店的輔導資料書架前大致閱讀一些,感覺哪本自己看起來很舒服,就用哪一本。如果還感覺不準,可以咨詢代課老師。