證明平行四邊形方法
兩條對角線互相平分的四邊形是平行四邊形;兩組對角分別相等的四邊形是平行四邊形;中心對稱的四邊形是平行四邊形。下面小編給大家?guī)碜C明平行四邊形定義,希望能幫助到大家!
證明平行四邊形方法
1、兩組對邊分別平行的四邊形是平行四邊形(定義判定法);
2、一組對邊平行且相等的四邊形是平行四邊形;
3、兩組對邊分別相等的四邊形是平行四邊形;
4、兩組對角分別相等的四邊形是平行四邊形(兩組對邊平行判定);
5、對角線互相平分的四邊形是平行四邊形。
補充:條件3僅在平面四邊形時成立,如果不是平面四邊形,即使是兩組對邊分別相等的四邊形,也不是平行四邊形。
平行四邊形,是在同一個二維平面內(nèi),由兩組平行線段組成的閉合圖形。平行四邊形一般用圖形名稱加四個頂點依次命名。注:在用字母表示四邊形時,一定要按順時針或逆時針方向注明各頂點。
在歐幾里德幾何中,平行四邊形是具有兩對平行邊的簡單(非自相交)四邊形。 平行四邊形的相對或相對的側(cè)面具有相同的長度,并且平行四邊形的相反的角度是相等的。
相比之下,只有一對平行邊的四邊形是梯形。平行四邊形的三維對應是平行六面體。
證明平行四邊形定理
1、兩組對邊分別平行的四邊形是平行四邊形(定義判定法);
2、一組對邊平行且相等的四邊形是平行四邊形;
3、兩組對邊分別相等的四邊形是平行四邊形;
4、兩組對角分別相等的四邊形是平行四邊形(兩組對邊平行判定);
5、對角線互相平分的四邊形是平行四邊形。
僅在平面四邊形時成立,如果不是平面四邊形,即使是兩組對邊分別相等的四邊形,也不是平行四邊形。
證明平行四邊形性質(zhì)
性質(zhì)(矩形、菱形、正方形都是特殊的平行四邊形。):
(1)如果一個四邊形是平行四邊形,那么這個四邊形的兩組對邊分別相等。
(簡述為“平行四邊形的兩組對邊分別相等” )
(2)如果一個四邊形是平行四邊形,那么這個四邊形的兩組對角分別相等。
(簡述為“平行四邊形的兩組對角分別相等” )
(3)如果一個四邊形是平行四邊形,那么這個四邊形的鄰角互補。
(簡述為“平行四邊形的鄰角互補”)
(4)夾在兩條平行線間的平行的高相等。(簡述為“平行線間的高距離處處相等”)
(5)如果一個四邊形是平行四邊形,那么這個四邊形的兩條對角線互相平分。
(簡述為“平行四邊形的對角線互相平分”)
(6)連接任意四邊形各邊的中點所得圖形是平行四邊形。(推論)
(7)平行四邊形的面積等于底和高的積。(可視為矩形。)
(8)過平行四邊形對角線交點的直線,將平行四邊形分成全等的兩部分圖形。
(9)平行四邊形是中心對稱圖形,對稱中心是兩對角線的交點.
(10)平行四邊形不是軸對稱圖形,但平行四邊形是中心對稱圖形。矩形和菱形是軸對稱圖形。注:正方形,矩形以及菱形也是一種特殊的平行四邊形,三者具有平行四邊形的性質(zhì)。
(11)平行四邊形ABCD中(如圖)E為AB的中點,則AC和DE互相三等分,一般地,若E為AB上靠近A的n等分點,則AC和DE互相(n+1)等分。
(12)平行四邊形ABCD中,AC、BD是平行四邊形ABCD的對角線,則各四邊的平方和等于對角線的平方和。
(13)平行四邊形對角線把平行四邊形面積分成四等份。
(14)平行四邊形中,兩條在不同對邊上的高所組成的夾角,較小的角等于平行四邊形中較小的角,較大的角等于平行四邊形中較大的角。
證明平行四邊形的方法有五種
1、兩組對邊分別平行的四邊形是平行四邊形。
2、一組對邊平行且相等的四邊形是平行四邊形。
3、兩組對邊分別相等的四邊形是平行四邊形。
4、兩組對角分別相等的四邊形是平行四邊形。
5、對角線互相平分的四邊形是平行四邊形。
平行四邊形(Parallelogram),是在同一個二維平面內(nèi),由兩組平行線段組成的閉合圖形。平行四邊形一般用圖形名稱加四個頂點依次命名。
在歐幾里德幾何中,平行四邊形是具有兩對平行邊的簡單(非自相交)四邊形。 平行四邊形的相對或相對的側(cè)面具有相同的長度,并且平行四邊形的相反的角度是相等的。
平行四邊形的定義:兩組對邊分別平行的四邊形叫做平行四邊形。
1、平行四邊形屬于平面圖形。
2、平行四邊形屬于四邊形。
證明平行四邊形方法相關(guān)文章:
★ 證明菱形判定方法