不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學習啦>學習方法>小學學習方法>六年級方法>六年級數學>

數學六年級下冊的知識點

時間: 舒淇4599 分享

數學是研究數量、結構、變化、空間以及信息等概念的一門學科,那么關于六年級的數學知識點有哪些呢?下面小編為大家?guī)頂祵W六年級下冊的知識點,希望對您有所幫助!

數學六年級下冊的知識點

一、分數乘法

(一)分數乘法的意義:

1、分數乘整數與整數乘法的意義相同。都是求幾個相同加數的和的簡便運算。

例如:65×5表示求5個65的和是多少? 1/3×5表示求5個1/3的和是多少?

2、一個數乘分數的意義是求一個數的幾分之幾是多少。

例如:1/3×4/7表示求1/3的4/7是多少。

4×3/8表示求4的3/8是多少.

(二)、分數乘法的計算法則:

1、分數與整數相乘:分子與整數相乘的積做分子,分母不變。(整數和分母約分)

2、分數與分數相乘:用分子相乘的積做分子,分母相乘的積做分母。注意:當帶分數進行乘法計算時,要先把帶分數化成假分數再進行計算。

3、為了計算簡便,能約分的要先約分,再計算。(盡量約分,不會約分的就不約,??嫉馁|因數有11×11=121;13×13=169;17×17=289;19×19=361)

4、小數乘分數,可以先把小數化為分數,也可以把分數化成小數再計算(建議把小數化分數再計算)。

(三)、 乘法中比較大小的規(guī)律

一個數(0除外)乘大于1的數,積大于這個數。

一個數(0除外)乘小于1的數(0除外),積小于這個數。

一個數(0除外)乘1,積等于這個數。

(四)、分數混合運算的運算順序和整數的運算順序相同。整數乘法的交換律、結合律和分配律,對于分數乘法也同樣適用。

乘法交換律: a × b = b × a

乘法結合律: ( a × b )×c = a × ( b × c )

乘法分配律: ( a + b )×c = a c + b c

二、分數乘法的解決問題(已知單位“1”的量(用乘法),即求單位“1”的幾分之幾是多少)

1、畫線段圖:(1)兩個量的關系:畫兩條線段圖,先畫單位一的量,注意兩條線段的左邊要對齊。(2)部分和整體的關系:畫一條線段圖。

2、找單位“1”: 單位“1” 在分率句中分率的前面;

或在“占”、“是”、“比”“相當于”的后面。

3、寫數量關系式的技巧:

(1)“的” 相當于 “×” ,“占”、“相當于”“是”、“比”是 “ = ”

(2)分率前是“的”字:用單位“1”的量×分率=具體量

例如:甲數是20,甲數的1/3是多少?列式是:20×1/3

4、看分率前有沒有多或少的問題;分率前是“多或少”的關系式:

(比少):單位“1”的量×(1-分率)=具體量;

例如:甲數是50,乙數比甲數少1/2,乙數是多少?

列式是:50×(1-1/2)

(比多):單位“1”的量×(1+分率)=具體量

例如:小紅有30元錢,小明比小紅多3/5,小紅有多少錢?

列式是:50×(1+3/5)

3、求一個數的幾倍是多少:用 一個數×幾倍;

4、求一個數的幾分之幾是多少: 用一個數×幾分之幾。

5、求幾個幾分之幾是多少:用幾分之幾×個數

6、求已知一個部分量是總量的幾分之幾,求另一個部分量的方法

(1)、單位“1”的量×(1-分率)=另一個部分量(建議用)

(2)、單位“1”的量-已知占單位“1”的幾分之幾的部分量=要求的部分量

例如:教材15頁做一做和16頁練習第七題(題目中有時候會有這種題的'關鍵字“其中”)

第二單元位置與方向(二)

一、確定物體位置的方法:1、先找觀測點;2、再定方向(看方向夾角的度數);3、最后確定距離(看比例尺)

二、描繪路線圖的關鍵是選好觀測點,建立方向標,確定方向和路程。

三、位置關系的相對性:1、兩地的位置具有相對性在敘述兩地的位置關系時,觀測點不同,敘述的方向正好相反,而度數和距離正好相等。

四、相對位置:東--西;南--北;南偏東--北偏西。

第三單元分數除法

三、倒數

1、倒數的意義: 乘積是1的兩個數互為倒數。

強調:互為倒數,即倒數是兩個數的關系,它們互相依存,倒數不能單獨存在?!?要說清誰是誰的倒數)。

2、求倒數的方法:

(1)、求分數的倒數:交換分子分母的位置。

(2)、求整數的倒數:把整數看做分母是1的分數,再交換分子分母的位置。

(3)、求帶分數的倒數:把帶分數化為假分數,再求倒數。

(4)、求小數的倒數: 把小數化為分數,再求倒數。

3、 1的倒數是1; 因為1×1=1;0沒有倒數,因為0乘任何數都得0,(分母不能為0)

4、真分數的倒數大于1;假分數的倒數小于或等于1;帶分數的倒數小于1。

5、運用,a×2/3=b×1/4求a和b是多少。把a×2/3=b×1/4看成等于1,也就是求2/3的倒數和求1/4的倒數。

1、分數除法的意義:

乘法: 因數 × 因數 = 積

除法: 積 ÷ 一個因數 = 另一個因數

分數除法與整數除法的意義相同,表示已知兩個因數的積和其中一個因數,求另一個因數的運算。

例如:1/2÷3/5意義是:已知兩個因數的積是1/2與其中一個因數3/5,求另一個因數的運算。

2、分數除法的計算法則:

除以一個不為0的數,等于乘這個數的倒數。

3、分數除法比較大小時的規(guī)律:

(1)當除數大于1,商小于被除數;

(2)當除數小于1(不等于0),商大于被除數;

(3)當除數等于1,商等于被除數。

“[ ]”叫做中括號。一個算式里,如果既有小括號,又有中括號,要先算小括號里面的, 再算中括號里面的。

二、分數除法解決問題

1,解法:(1)方程: 根據數量關系式設未知量為X,用方程解答。

解:設未知量為X (一定要解設),再列方程 用 X×分率=具體量

例如:公雞有20只,是母雞只數的1/3,母雞有多少只。(單位一是母雞只數,單位一未知.)解:設母雞有X只。列方程為:X×1/3=20

(2)算術(用除法):單位“1”的量未知用除法:

即已知單位“1”的幾分之幾是多少,求單位“1”的量。

分率對應量÷對應分率 = 單位“1”的量

例如:公雞有20只,是母雞只數的1/3,母雞有多少只。(單位一是母雞只數,單位一未知,)用除法,列式是:20÷1/3

2、看分率前有沒有比多或比少的問題;

分率前是“多或少”的關系式:

(比少):具體量÷ (1-分率)= 單位“1”的量;

例如:桃樹有50棵,比蘋果樹少1/6,蘋果樹有多少棵。

列式是:50÷(1-1/6)

(比多):具體量 ÷ (1+分率)= 單位“1”的量

例如:一種商品現在是80元,比原價增加了1/7,原價多少?

列式是:80÷(1+1/7)

3、求一個數是另一個數的幾分之幾是多少: 用一個數除以另一個數,結果寫為分數形式。

例如:男生有20人,女生有15人,女生人數占男生人數的幾分之幾。

列式是:15÷20=15/20=3/4

4、求一個數比另一個數多幾分之幾的方法:

用兩個數的相差量÷單位“1”的量 =分數

即①求一個數比另一個數多幾分之幾:用(大數–小數) ÷另一個數(比那個數就除以那個數),結果寫為分數形式。

例如:5比3多幾分之幾?(5-3)÷3=2/3

②求一個數比另一個數少幾分之幾:用(大數–小數) ÷另一個數(比那個數就除以那個數),結果寫為分數形式。

例如:3比5少幾分之幾?(5-3)÷5=2/5

說明:多幾分之幾不等于少幾分之幾,因為單位一不同。

5、工程問題:把工作總量看作單位“1”,合做多長時間完成一項工程用1÷效率和,即1÷(1/時間+1/時間),(工作效率=1/時間)

例如:一項工程甲單獨做要5天完成,乙單獨做要10天完成,甲單獨做要3天完成,三人合做幾天可以完成?列式:1÷(1/5+1/10+1/3)

數學六年級下冊必考知識點

1.比和比例的意義

比的意義是兩個數的除又叫做兩個數的比,而比例的意義是表示兩個比相等的式子是叫做比例。比是表示兩個數相除,有兩項;比例是一個等式,表示兩個比相等,有四項。因此,比和比例的意義也有所不同。而且,比號沒有括號的含義而另一種形式,分數有括號的含義!

2.比的基本性質:比的前項和后項都乘以或除以一個不為零的數。比值不變。用于化簡比。

3.比例的性質:在比例里,兩個外項的乘積等于兩個內項的乘積。比例的性質用于解比例。

4.比和比例的聯系:

比和比例有著密切聯系。比是研究兩個量之間的關系,所以它有兩項;比例是研究相關聯的兩種量中兩組相對應數的關系,所以比例是由四項組成。比例是由比組成的,成比例的兩個比的比值一定相等。

5.比和比例的區(qū)別

(1)意義、項數、各部分名稱不同。比表示兩個數相除;只有兩個項:比的前項和后項。如:a:b這是比比例是一個等式,表示兩個比相等;有四個項:兩個外項和兩個內項。a:b=3:4這是比例。

(2)比的基本性質和比例的基本性質意義不同、應用不同。聯系:比例是由兩個相等的比組成。

6.正比例:若A擴大或縮小幾倍,B也擴大或縮小幾倍(AB的商不變時),則A與B成正比。反比例:若A擴大或縮小幾倍,B也縮小或擴大幾倍(AB的積不變時),則A與B成反比。比例尺:圖上距離與實際距離的比叫做比例尺。

數學六年級下冊基礎知識點

分數除法是分數乘法的逆運算。

1.意義:與整數除法的意義相同,都是已知兩個因數的積與其中一個因數求另一個因數。

2.計算法則:甲數除以乙數(0除外),等于甲數乘乙數的倒數。

3.應用題:已知一個數的幾分之幾是多少,求這個數用除法計算。

小技巧:

(1)先找單位1。單位1已知,求部分量或對應分率用乘法,求單位1用除法。

(2)在解答分數除法應用題時要找準單位“1”的量,而簡單的分數除法應用題就是要求單位“1”的量。

(3)分數除法應用題的數量關系式是:

單位“1”×分率=分率對應的量

在具體解答時,用方程做,設單位“1”的量為ⅹ。

(4)解答分數除法應用題時,可以借助于線段圖來分析數量關系。在畫線段圖時,先畫單位“1”的量。

可以發(fā)現:當應用題中單位“1”已經知道時,就用乘法解;當單位“1”不知道,要求單位“1”時,要用除法解或列方程解。

1608729