2022北師大版九年級數(shù)學教案
虛假的學問比無知更糟糕。無知好比一塊空地,可以耕耘和播種;虛假的學問就象一塊長滿雜草的荒地,幾乎無法把草拔盡。就像不扎實的數(shù)學基礎。下面就是小編為大家梳理歸納的內(nèi)容,希望能夠幫助到大家。
2020北師大九年級下冊數(shù)學教案:正弦和余弦
一、素質(zhì)教育目標
(一)知識教學點
使學生知道當直角三角形的銳角固定時,它的對邊、鄰邊與斜邊的比值也都固定這一事實.
(二)能力訓練點
逐步培養(yǎng)學生會觀察、比較、分析、概括等邏輯思維能力.
(三)德育滲透點
引導學生探索、發(fā)現(xiàn),以培養(yǎng)學生獨立思考、勇于創(chuàng)新的精神和良好的學習習慣.
二、教學重點、難點
1.重點:使學生知道當銳角固定時,它的對邊、鄰邊與斜邊的比值也是固定的這一事實.
2.難點:學生很難想到對任意銳角,它的對邊、鄰邊與斜邊的比值也是固定的事實,關鍵在于教師引導學生比較、分析,得出結論.
三、教學步驟
(一)明確目標
1.如圖6-1,長5米的梯子架在高為3米的墻上,則A、B間距離為多少米?
2.長5米的梯子以傾斜角∠CAB為30°靠在墻上,則A、B間的距離為多少?
3.若長5米的梯子以傾斜角40°架在墻上,則A、B間距離為多少?
4.若長5米的梯子靠在墻上,使A、B間距為2米,則傾斜角∠CAB為多少度?
前兩個問題學生很容易回答.這兩個問題的設計主要是引起學生的回憶,并使學生意識到,本章要用到這些知識.但后兩個問題的設計卻使學生感到疑惑,這對初三年級這些好奇、好勝的學生來說,起到激起學生的學習興趣的作用.同時使學生對本章所要學習的內(nèi)容的特點有一個初步的了解,有些問題單靠勾股定理或含30°角的直角三角形和等腰直角三角形的知識是不能解決的,解決這類問題,關鍵在于找到一種新方法,求出一條邊或一個未知銳角,只要做到這一點,有關直角三角形的其他未知邊角就可用學過的知識全部求出來.
通過四個例子引出課題.
(二)整體感知
1.請每一位同學拿出自己的三角板,分別測量并計算30°、45°、60°角的對邊、鄰邊與斜邊的比值.
學生很快便會回答結果:無論三角尺大小如何,其比值是一個固定的值.程度較好的學生還會想到,以后在這些特殊直角三角形中,只要知道其中一邊長,就可求出其他未知邊的長.
2.請同學畫一個含40°角的直角三角形,并測量、計算40°角的對邊、鄰邊與斜邊的比值,學生又高興地發(fā)現(xiàn),不論三角形大小如何,所求的比值是固定的.大部分學生可能會想到,當銳角取其他固定值時,其對邊、鄰邊與斜邊的比值也是固定的嗎?
這樣做,在培養(yǎng)學生動手能力的同時,也使學生對本節(jié)課要研究的知識有了整體感知,喚起學生的求知欲,大膽地探索新知.
(三)重點、難點的學習與目標完成過程
1.通過動手實驗,學生會猜想到“無論直角三角形的銳角為何值,它的對邊、鄰邊與斜邊的比值總是固定不變的”.但是怎樣證明這個命題呢?學生這時的思維很活躍.對于這個問題,部分學生可能能解決它.因此教師此時應讓學生展開討論,獨立完成.
2.學生經(jīng)過研究,也許能解決這個問題.若不能解決,教師可適當引導:
若一組直角三角形有一個銳角相等,可以把其
頂點A1,A2,A3重合在一起,記作A,并使直角邊AC1,AC2,AC3……落在同一條直線上,則斜邊AB1,AB2,AB3……落在另一條直線上.這樣同學們能解決這個問題嗎?引導學生獨立證明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴
形中,∠A的對邊、鄰邊與斜邊的比值,是一個固定值.
通過引導,使學生自己獨立掌握了重點,達到知識教學目標,同時培養(yǎng)學生能力,進行了德育滲透.
而前面導課中動手實驗的設計,實際上為突破難點而設計.這一設計同時起到培養(yǎng)學生思維能力的作用.
練習題為 作了孕伏同時使學生知道任意銳角的對邊與斜邊的比值都能求出來.
(四)總結與擴展
1.引導學生作知識總結:本節(jié)課在復習勾股定理及含30°角直角三角形的性質(zhì)基礎上,通過動手實驗、證明,我們發(fā)現(xiàn),只要直角三角形的銳角固定,它的對邊、鄰邊與斜邊的比值也是固定的.
教師可適當補充:本節(jié)課經(jīng)過同學們自己動手實驗,大膽猜測和積極思考,我們發(fā)現(xiàn)了一個新的結論,相信大家的邏輯思維能力又有所提高,希望大家發(fā)揚這種創(chuàng)新精神,變被動學知識為主動發(fā)現(xiàn)問題,培養(yǎng)自己的創(chuàng)新意識.
2.擴展:當銳角為30°時,它的對邊與斜邊比值我們知道.今天我們又發(fā)現(xiàn),銳角任意時,它的對邊與斜邊的比值也是固定的.如果知道這個比值,已知一邊求其他未知邊的問題就迎刃而解了.看來這個比值很重要,下節(jié)課我們就著重研究這個“比值”,有興趣的同學可以提前預習一下.通過這種擴展,不僅對正、余弦概念有了初步印象,同時又激發(fā)了學生的興趣.
四、布置作業(yè)
本節(jié)課內(nèi)容較少,而且是為正、余弦概念打基礎的,因此課后應要求學生預習正余弦概念.
五、板書設計
2020人教版九年級數(shù)學教案:函數(shù)
教學目標:
1、進一步理解函數(shù)的概念,能從簡單的實際事例中,抽象出函數(shù)關系,列出函數(shù)解析式;
2、使學生分清常量與變量,并能確定自變量的取值范圍.
3、會求函數(shù)值,并體會自變量與函數(shù)值間的對應關系.
4、使學生掌握解析式為只含有一個自變量的簡單的整式、分式、二次根式的函數(shù)的自變量的取值范圍的求法.
5、通過函數(shù)的教學使學生體會到事物是相互聯(lián)系的.是有規(guī)律地運動變化著的.
教學重點:了解函數(shù)的意義,會求自變量的取值范圍及求函數(shù)值.
教學難點:函數(shù)概念的抽象性.
教學過程:
(一)引入新課:
上一節(jié)課我們講了函數(shù)的概念:一般地,設在一個變化過程中有兩個變量x、y,如果對于x的每一個值,y都有的值與它對應,那么就說x是自變量,y是x的函數(shù).
生活中有很多實例反映了函數(shù)關系,你能舉出一個,并指出式中的自變量與函數(shù)嗎?
1、學校計劃組織一次春游,學生每人交30元,求總金額y(元)與學生數(shù)n(個)的關系.
2、為迎接新年,班委會計劃購買100元的小禮物送給同學,求所能購買的總數(shù)n(個)與單價(a)元的關系.
解:1、y=30n
y是函數(shù),n是自變量
2、 ,n是函數(shù),a是自變量.
(二)講授新課
剛才所舉例子中的函數(shù),都是利用數(shù)學式子即解析式表示的.這種用數(shù)學式子表示函數(shù)時,要考慮自變量的取值必須使解析式有意義.如第一題中的學生數(shù)n必須是正整數(shù).
例1、求下列函數(shù)中自變量x的取值范圍.
(1) (2)
(3) (4)
(5) (6)
分析:在(1)、(2)中,x取任意實數(shù), 與 都有意義.
(3)小題的 是一個分式,分式成立的條件是分母不為0.這道題的分母是 ,因此要求 .
同理(4)小題的 也是分式,分式成立的條件是分母不為0,這道題的分母是 ,因此要求 且 .
第(5)小題, 是二次根式,二次根式成立的條件是被開方數(shù)大于、等于零. 的被開方數(shù)是 .
同理,第(6)小題 也是二次根式, 是被開方數(shù),
.
解:(1)全體實數(shù)
(2)全體實數(shù)
(3)
(4) 且
(5)
(6)
小結:從上面的例題中可以看出函數(shù)的解析式是整數(shù)時,自變量可取全體實數(shù);函數(shù)的解析式是分式時,自變量的取值應使分母不為零;函數(shù)的解析式是二次根式時,自變量的取值應使被開方數(shù)大于、等于零.
注意:有些同學沒有真正理解解析式是分式時,自變量的取值應使分母不為零,片面地認為,凡是分母,只要 即可.教師可將解題步驟設計得細致一些.先提問本題的分母是什么?然后再要求分式的分母不為零.求出使函數(shù)成立的自變量的取值范圍.二次根式的問題也與次類似.
但象第(4)小題,有些同學會犯這樣的錯誤,將答案寫成 或 .在解一元二次方程時,方程的兩根用“或者”聯(lián)接,在這里就直接拿過來用.限于初中學生的接受能力,教師可聯(lián)系日常生活講清“且”與“或”.說明這里 與 是并且的關系.即2與-1這兩個值x都不能取.
例2、自行車保管站在某個星期日保管的自行車共有3500輛次,其中變速車保管費是每輛一次0.5元,一般車保管費是每次一輛0.3元.
(1)若設一般車停放的輛次數(shù)為x,總的保管費收入為y元,試寫出y關于x的函數(shù)關系式;
(2)若估計前來停放的3500輛次自行車中,變速車的輛次不小于25%,但不大于40%,試求該保管站這個星期日收入保管費總數(shù)的范圍.
解:(1)
(x是正整數(shù),
(2)若變速車的輛次不小于25%,但不大于40%,
則
收入在1225元至1330元之間
總結:對于反映實際問題的函數(shù)關系,應使得實際問題有意義.這樣,就要求聯(lián)系實際,具體問題具體分析.
對于函數(shù) ,當自變量 時,相應的函數(shù)y的值是 .60叫做這個函數(shù)當 時的函數(shù)值.
例3、求下列函數(shù)當 時的函數(shù)值:
(1) (2)
(3) (4)
解:1)當 時,
(2)當 時,
(3)當 時,
(4)當 時,
注:本例既鍛煉了學生的計算能力,又創(chuàng)設了情境,讓學生體會對于x的每一個值,y都有確定的值與之對應.以此加深對函數(shù)的理解.
(二)小結:
這節(jié)課,我們進一步地研究了有關函數(shù)的概念.在研究函數(shù)關系時首先要考慮自變量的取值范圍.因此,要求大家能掌握解析式含有一個自變量的簡單的整式、分式、二次根式的函數(shù)的自變量取值范圍的求法,并能求出其相應的函數(shù)值.另外,對于反映實際問題的函數(shù)關系,要具體問題具體分析.
人教版九年級數(shù)學上冊教案:直接開平方法
理解一元二次方程“降次”——轉化的數(shù)學思想,并能應用它解決一些具體問題.
提出問題,列出缺一次項的一元二次方程ax2+c=0,根據(jù)平方根的意義解出這個方程,然后知識遷移到解a(ex+f)2+c=0型的一元二次方程.
重點
運用開平方法解形如(x+m)2=n(n≥0)的方程,領會降次——轉化的數(shù)學思想.
難點
通過根據(jù)平方根的意義解形如x2=n的方程,將知識遷移到根據(jù)平方根的意義解形如(x+m)2=n(n≥0)的方程.
一、復習引入
學生活動:請同學們完成下列各題.
問題1:填空
(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.
解:根據(jù)完全平方公式可得:(1)16 4;(2)4 2;(3)(p2)2 p2.
問題2:目前我們都學過哪些方程?二元怎樣轉化成一元?一元二次方程與一元一次方程有什么不同?二次如何轉化成一次?怎樣降次?以前學過哪些降次的方法?
二、探索新知
上面我們已經(jīng)講了x2=9,根據(jù)平方根的意義,直接開平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開平方的方法求解呢?
(學生分組討論)
老師點評:回答是肯定的,把2t+1變?yōu)樯厦娴膞,那么2t+1=±3
即2t+1=3,2t+1=-3
方程的兩根為t1=1,t2=-2
例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2
分析:(1)x2+4x+4是一個完全平方公式,那么原方程就轉化為(x+2)2=1.
(2)由已知,得:(x+3)2=2
直接開平方,得:x+3=±2
即x+3=2,x+3=-2
所以,方程的兩根x1=-3+2,x2=-3-2
解:略.
例2 市政府計劃2年內(nèi)將人均住房面積由現(xiàn)在的10 m2提高到14.4 m2,求每年人均住房面積增長率.
分析:設每年人均住房面積增長率為x,一年后人均住房面積就應該是10+10x=10(1+x);二年后人均住房面積就應該是10(1+x)+10(1+x)x=10(1+x)2
解:設每年人均住房面積增長率為x,
則:10(1+x)2=14.4
(1+x)2=1.44
直接開平方,得1+x=±1.2
即1+x=1.2,1+x=-1.2
所以,方程的兩根是x1=0.2=20%,x2=-2.2
因為每年人均住房面積的增長率應為正的,因此,x2=-2.2應舍去.
所以,每年人均住房面積增長率應為20%.
(學生小結)老師引導提問:解一元二次方程,它們的共同特點是什么?
共同特點:把一個一元二次方程“降次”,轉化為兩個一元一次方程.我們把這種思想稱為“降次轉化思想”.
三、鞏固練習
教材第6頁 練習.
四、課堂小結
本節(jié)課應掌握:由應用直接開平方法解形如x2=p(p≥0)的方程,那么x=±p轉化為應用直接開平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,達到降次轉化之目的.若p<0則方程無解.
五、作業(yè)布置
2020北師大版九年級數(shù)學教案相關文章: