初三數(shù)學知識點整理
學習的成功與失敗原因是多方面的,要首先從自己身上找原因,才能受到鼓舞,找出努力的方向。每一門科目都有自己的學習方法,但其實都是萬變不離其中的,數(shù)學其實和語文英語一樣,也是要記、要背、要練的。下面是小編給大家整理的初三數(shù)學知識點,希望對大家有所幫助。
初三年級下學期數(shù)學知識點
【二次函數(shù)的圖像與性質(zhì)】
二次函數(shù)的概念:一般地,形如ax^2+bx+c=0的函數(shù),叫做二次函數(shù)。
這里需要強調(diào):和一元二次方程類似,二次項系數(shù)a≠0,而b,c可以為零.二次函數(shù)的定義域是全體實數(shù).
二次函數(shù)圖像與性質(zhì)口訣
二次函數(shù)拋物線,圖象對稱是關(guān)鍵;
開口、頂點和交點,它們確定圖象限;
開口、大小由a斷,c與Y軸來相見,b的符號較特別,符號與a相關(guān)聯(lián);頂點位置先找見,Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點坐標最重要,一般式配方它就現(xiàn),橫標即為對稱軸,縱標函數(shù)最值見。若求對稱軸位置,符號反,一般、頂點、交點式,不同表達能互換。
【二次函數(shù)的應用】
在公路、橋梁、隧道、城市建設(shè)等很多方面都有拋物線型;生產(chǎn)和生活中,有很多“利潤”、“用料最少”、“開支最節(jié)約”、“線路最短”、“面積”等問題,它們都有可能用到二次函數(shù)關(guān)系,用到二次函數(shù)的最值。
那么解決這類問題的一般步驟是:
第一步:設(shè)自變量;
第二步:建立函數(shù)解析式;
第三步:確定自變量取值范圍;
第四步:根據(jù)頂點坐標公式或配方法求出最值(在自變量的取值范圍內(nèi))。
初三年級數(shù)學知識點
【函數(shù)的圖像與一元二次方程】
1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同
當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,
當h<0時,則向左平行移動|h|個單位得到.
當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;
當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;
因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.
2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).
3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小.
4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:
(1)圖象與y軸一定相交,交點坐標為(0,c);
(2)當△=b^2-4ac>0,圖象與x軸交于兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根.這兩點間的距離AB=|x?-x?|
當△=0.圖象與x軸只有一個交點;
當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y<0.
5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a.
頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值.
6.用待定系數(shù)法求二次函數(shù)的解析式
(1)當題給條件為已知圖象經(jīng)過三個已知點或已知x、y的三對對應值時,可設(shè)解析式為一般形式:
y=ax^2+bx+c(a≠0).
(2)當題給條件為已知圖象的頂點坐標或?qū)ΨQ軸時,可設(shè)解析式為頂點式:y=a(x-h)^2+k(a≠0).
(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設(shè)解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).
初三年級數(shù)學知識點蘇科版
一.知識框架
二.知識概念
1.圓:平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。
2.圓弧和弦:圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意
意兩點的線段叫做弦。經(jīng)過圓心的弦叫做直徑。
3.圓心角和圓周角:頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。
4.內(nèi)心和外心:過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內(nèi)切圓,其圓心稱為內(nèi)心。
5.扇形:在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形。
6.圓錐側(cè)面展開圖是一個扇形。這個扇形的半徑稱為圓錐的母線。
7.圓和點的位置關(guān)系:以點P與圓O的為例(設(shè)P是一點,則PO是點到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO
8.直線與圓有3種位置關(guān)系:無公共點為相離;有兩個公共點為相交,這條直線叫做圓的割線;圓與直線有公共點為相切,這條直線叫做圓的切線,這個的公共點叫做切點。
9.兩圓之間有5種位置關(guān)系:無公共點的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有公共點的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有兩個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r
10.切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線。
11.切線的性質(zhì):(1)經(jīng)過切點垂直于這條半徑的直線是圓的切線。(2)經(jīng)過切點垂直于切線的直線必經(jīng)過圓心。(3)圓的切線垂直于經(jīng)過切點的半徑。
12.垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。
13.有關(guān)定理:
平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧.
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等.
在同圓或等圓中,同弧等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.
半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.
14.圓的計算公式1.圓的周長C=2πr=πd2.圓的面積S=πr^2;3.扇形弧長l=nπr/180
15.扇形面積S=π(R^2-r^2)5.圓錐側(cè)面積S=πrl
初三數(shù)學學習方法
1、課前認真預習。預習的目的是為了能更好得聽老師講課,通過預習,掌握度要達到百分之八十。帶著預習中不明白的問題去聽老師講課,來解答這類的問題。預習還可以使聽課的整體效率提高。具體的預習方法:將書上的題目做完,畫出知識點,整個過程大約持續(xù)15-20分……在時間允許的情況下,還可以將練習冊做完。
2、讓數(shù)學課學與練結(jié)合。在數(shù)學課上,光聽是沒用的。當老師讓同學去黑板上演算時,自己也要在草稿紙上練。如果遇到不懂的難題,一定要提出來,不能不求甚解.否則考試遇到類似的題目就可能不會做。聽老師講課時一定要全神貫注,要注意細節(jié)問題,否則“千里之堤,毀于蟻穴”。
3、課后及時復習。寫完作業(yè)后對當天老師講的內(nèi)容進行梳理,可以適當?shù)刈?5分鐘左右的課外題??梢愿鶕?jù)自己的需要選擇適合自己的課外書。其課外題內(nèi)容大概就是今天上的課。
初三數(shù)學知識點整理歸納相關(guān)文章: