高一數(shù)學(xué)必背知識點總結(jié)及公式
高一數(shù)學(xué)必背知識點總結(jié)及公式大全
學(xué)習(xí)數(shù)學(xué)時很多時候都需要運用到公式計算的問題,那么關(guān)于高一的重要知識點和公式有哪些呢?以下是小編準(zhǔn)備的一些高一數(shù)學(xué)必背知識點總結(jié)及公式,僅供參考。
高一數(shù)學(xué)知識點整理
兩個平面的位置關(guān)系:
(1)兩個平面互相平行的定義:空間兩平面沒有公共點
(2)兩個平面的位置關(guān)系:
兩個平面平行——沒有公共點;兩個平面相交——有一條公共直線。
a、平行
兩個平面平行的判定定理:如果一個平面內(nèi)有兩條相交直線都平行于另一個平面,那么這兩個平面平行。
兩個平面平行的性質(zhì)定理:如果兩個平行平面同時和第三個平面相交,那么交線平行。
b、相交
二面角
(1)半平面:平面內(nèi)的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。
(2)二面角:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]
(3)二面角的棱:這一條直線叫做二面角的棱。
(4)二面角的面:這兩個半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
兩平面垂直
兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥
兩平面垂直的判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直
兩個平面垂直的性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于交線的直線垂直于另一個平面。
二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補關(guān)系)
棱錐
棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐。
棱錐的性質(zhì):
(1)側(cè)棱交于一點。側(cè)面都是三角形
(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方
正棱錐
正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質(zhì):
(1)各側(cè)棱交于一點且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(3)多個特殊的直角三角形
a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。
集合
集合具有某種特定性質(zhì)的事物的總體。這里的“事物”可以是人,物品,也可以是數(shù)學(xué)元素。例如:1、分散的人或事物聚集到一起;使聚集:緊急~。2、數(shù)學(xué)名詞。一組具有某種共同性質(zhì)的數(shù)學(xué)元素:有理數(shù)的~。3、口號等等。集合在數(shù)學(xué)概念中有好多概念,如集合論:集合是現(xiàn)代數(shù)學(xué)的基本概念,專門研究集合的理論叫做集合論??低?Cantor,G.F.P.,1845年—1918年,德國數(shù)學(xué)家先驅(qū),是集合論的創(chuàng)始者,目前集合論的基本思想已經(jīng)滲透到現(xiàn)代數(shù)學(xué)的所有領(lǐng)域。
集合,在數(shù)學(xué)上是一個基礎(chǔ)概念。什么叫基礎(chǔ)概念?基礎(chǔ)概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下“定義”。
集合是把人們的直觀的或思維中的某些確定的能夠區(qū)分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。
集合與集合之間的關(guān)系
某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ??占侨魏渭系淖蛹?,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。(說明一下:如果集合A的所有元素同時都是集合B的元素,則A稱作是B的子集,寫作A B。若A是B的子集,且A不等于B,則A稱作是B的真子集,一般寫作A屬于B。中學(xué)教材課本里將符號下加了一個不等于符號,不要混淆,考試時還是要以課本為準(zhǔn)。所有男人的集合是所有人的集合的真子集。)
高一怎么學(xué)數(shù)學(xué)
1.記數(shù)學(xué)筆記,特別是對概念理解的不同側(cè)面和數(shù)學(xué)規(guī)律,教師為備戰(zhàn)高考而加的課外知識。如:我在講課時的注解。
2.建立數(shù)學(xué)糾錯本。把平時容易出現(xiàn)錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對癥下藥;解答問題完整、推理嚴(yán)密。
3.記憶數(shù)學(xué)規(guī)律和數(shù)學(xué)小結(jié)論。
4.與同學(xué)建立好關(guān)系,爭做“小老師”,形成數(shù)學(xué)學(xué)習(xí)“互助組”。
5.爭做數(shù)學(xué)課外題,加大自學(xué)力度。
6.反復(fù)鞏固,消滅前學(xué)后忘。
7.學(xué)會總結(jié)歸類。①從數(shù)學(xué)思想分類②從解題方法歸類③從知識應(yīng)用上分類。
總之,對高一新生來說,學(xué)好數(shù)學(xué),首先要抱著濃厚的興趣去學(xué)習(xí)數(shù)學(xué),積極展開思維的翅膀,主動地參與教育全過程,充分發(fā)揮自己的主觀能動性,愉快有效地學(xué)數(shù)學(xué)。
高一數(shù)學(xué)六種題型解題技巧
一、三角函數(shù)題
注意歸一公式、誘導(dǎo)公式的正確性(轉(zhuǎn)化成同名同角三角函數(shù)時,套用歸一公式、誘導(dǎo)公式(奇變、偶不變;符號看象限)時,很容易因為粗心,導(dǎo)致錯誤!一著不慎,滿盤皆輸!)。
二、數(shù)列題
1、證明一個數(shù)列是等差(等比)數(shù)列時,最后下結(jié)論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數(shù)列;
2、最后一問證明不等式成立時,如果一端是常數(shù),另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時,當(dāng)n=k+1時,一定利用上n=k時的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進行適當(dāng)?shù)姆趴s,這一點是有難度的。簡潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號,得到目標(biāo)式子,下結(jié)論時一定寫上綜上:由①②得證;
3、證明不等式時,有時構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡單(所以要有構(gòu)造函數(shù)的意識)。
三、立體幾何題
1、證明線面位置關(guān)系,一般不需要去建系,更簡單;
2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,最好要建系;
3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系(符號問題、鈍角、銳角問題)。
四、概率問題
1、搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數(shù);
2、搞清是什么概率模型,套用哪個公式;
3、記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;
4、求概率時,正難則反(根據(jù)p1+p2+...+pn=1);
5、注意計數(shù)時利用列舉、樹圖等基本方法;
6、注意放回抽樣,不放回抽樣;
7、注意“零散的”的知識點(莖葉圖,頻率分布直方圖、分層抽樣等)在大題中的滲透;
8、注意條件概率公式;
9、注意平均分組、不完全平均分組問題。
五、圓錐曲線問題
1、注意求軌跡方程時,從三種曲線(橢圓、雙曲線、拋物線)著想,橢圓考得最多,方法上有直接法、定義法、交軌法、參數(shù)法、待定系數(shù)法;
2、注意直線的設(shè)法(法1分有斜率,沒斜率;法2設(shè)x=my+b(斜率不為零時),知道弦中點時,往往用點差法);注意判別式;注意韋達定理;注意弦長公式;注意自變量的取值范圍等等;
3、戰(zhàn)術(shù)上整體思路要保7分,爭9分,想12分。
六、導(dǎo)數(shù)、極值、最值、不等式恒成立(或逆用求參)問題
1、先求函數(shù)的定義域,正確求出導(dǎo)數(shù),特別是復(fù)合函數(shù)的導(dǎo)數(shù),單調(diào)區(qū)間一般不能并,用“和”或“,”隔開(知函數(shù)求單調(diào)區(qū)間,不帶等號;知單調(diào)性,求參數(shù)范圍,帶等號);
2、注意最后一問有應(yīng)用前面結(jié)論的意識;
3、注意分論討論的思想;
4、不等式問題有構(gòu)造函數(shù)的意識;
5、恒成立問題(分離常數(shù)法、利用函數(shù)圖像與根的分布法、求函數(shù)最值法);
6、整體思路上保6分,爭10分,想14分。