不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高一學(xué)習(xí)方法 > 高一數(shù)學(xué) >

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)及公式大全

時(shí)間: 夢(mèng)熒0 分享

高一必修一的數(shù)學(xué)是高中數(shù)學(xué)的開始,如果開頭開不好,那么高中三年的數(shù)學(xué)基本就很難學(xué)好了。以下是小編準(zhǔn)備的一些高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)及公式大全,僅供參考。

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)及公式大全

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié):集合與函數(shù)概念

一:集合的含義與表示

1、集合的含義:集合為一些確定的、不同的東西的全體,人們能意識(shí)到這些東西,并且能判斷一個(gè)給定的東西是否屬于這個(gè)整體。

把研究對(duì)象統(tǒng)稱為元素,把一些元素組成的總體叫集合,簡(jiǎn)稱為集。

2、集合的中元素的三個(gè)特性:

(1)元素的確定性:集合確定,則一元素是否屬于這個(gè)集合是確定的:屬于或不屬于。

(2)元素的互異性:一個(gè)給定集合中的元素是唯一的,不可重復(fù)的。

(3)元素的無序性:集合中元素的位置是可以改變的,并且改變位置不影響集合

3、集合的表示:{…}

(1)用大寫字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

(2)集合的表示方法:列舉法與描述法。

a、列舉法:將集合中的元素一一列舉出來{a,b,c……}

b、描述法:

①區(qū)間法:將集合中元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合。

{x?R|x-3>2},{x|x-3>2}

②語言描述法:例:{不是直角三角形的三角形}

③Venn圖:畫出一條封閉的曲線,曲線里面表示集合。

4、集合的分類:

(1)有限集:含有有限個(gè)元素的集合

(2)無限集:含有無限個(gè)元素的集合

(3)空集:不含任何元素的集合

5、元素與集合的關(guān)系:

(1)元素在集合里,則元素屬于集合,即:a?A

(2)元素不在集合里,則元素不屬于集合,即:a¢A

注意:常用數(shù)集及其記法:

非負(fù)整數(shù)集(即自然數(shù)集)記作:N

正整數(shù)集N__或N+

整數(shù)集Z

有理數(shù)集Q

實(shí)數(shù)集R

6、集合間的基本關(guān)系

(1).“包含”關(guān)系(1)—子集

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)及公式大全

定義:如果集合A的任何一個(gè)元素都是集合B的元素,我們說這兩個(gè)集合有包含關(guān)系,稱集合A是集合B的子集。

7、集合的運(yùn)算

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)及公式大全

二、函數(shù)的概念

函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A---B為從集合A到集合B的一個(gè)函數(shù).記作:y=f(x),x∈A.

(1)其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;

(2)與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.

函數(shù)的三要素:定義域、值域、對(duì)應(yīng)法則

函數(shù)的表示方法:(1)解析法:明確函數(shù)的定義域

(2)圖想像:確定函數(shù)圖像是否連線,函數(shù)的圖像可以是連續(xù)的曲線、直線、折線、離散的點(diǎn)等等。

(3)列表法:選取的自變量要有代表性,可以反應(yīng)定義域的特征。

4、函數(shù)圖象知識(shí)歸納

(1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上.

(2)畫法

A、描點(diǎn)法:B、圖象變換法:平移變換;伸縮變換;對(duì)稱變換,即平移。

(3)函數(shù)圖像平移變換的特點(diǎn):

1)加左減右——————只對(duì)x

2)上減下加——————只對(duì)y

3)函數(shù)y=f(x)關(guān)于X軸對(duì)稱得函數(shù)y=-f(x)

4)函數(shù)y=f(x)關(guān)于Y軸對(duì)稱得函數(shù)y=f(-x)

5)函數(shù)y=f(x)關(guān)于原點(diǎn)對(duì)稱得函數(shù)y=-f(-x)

6)函數(shù)y=f(x)將x軸下面圖像翻到x軸上面去,x軸上面圖像不動(dòng)得

函數(shù)y=|f(x)|

7)函數(shù)y=f(x)先作x≥0的圖像,然后作關(guān)于y軸對(duì)稱的圖像得函數(shù)f(|x|)

三、函數(shù)的基本性質(zhì)

1、函數(shù)解析式子的求法

(1、函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對(duì)應(yīng)法則,二是要求出函數(shù)的定義域.

(2、求函數(shù)的解析式的主要方法有:

1)代入法:

2)待定系數(shù)法:

3)換元法:

4)拼湊法:

2.定義域:能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域。

求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:

(1)分式的分母不等于零;

(2)偶次方根的被開方數(shù)不小于零;

(3)對(duì)數(shù)式的真數(shù)必須大于零;

(4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1.

(5)如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.

(6)指數(shù)為零底不可以等于零,

(7)實(shí)際問題中的函數(shù)的定義域還要保證實(shí)際問題有意義.

3、相同函數(shù)的判斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的字母無關(guān));②定義域一致(兩點(diǎn)必須同時(shí)具備)

4、區(qū)間的概念:

(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間

(2)無窮區(qū)間

(3)區(qū)間的數(shù)軸表示

5、值域(先考慮其定義域)

(1)觀察法:直接觀察函數(shù)的圖像或函數(shù)的解析式來求函數(shù)的值域;

(2)反表示法:針對(duì)分式的類型,把Y關(guān)于X的函數(shù)關(guān)系式化成X關(guān)于Y的函數(shù)關(guān)系式,由X的范圍類似求Y的范圍。

(3)配方法:針對(duì)二次函數(shù)的類型,根據(jù)二次函數(shù)圖像的性質(zhì)來確定函數(shù)的值域,注意定義域的范圍。

(4)代換法(換元法):作變量代換,針對(duì)根式的題型,轉(zhuǎn)化成二次函數(shù)的類型。

6.分段函數(shù)

(1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。

(2)各部分的自變量的取值情況.

(3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

(4)常用的分段函數(shù)有取整函數(shù)、符號(hào)函數(shù)、含絕對(duì)值的函數(shù)

7.映射

一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:A---B為從集合A到集合B的一個(gè)映射。記作“f(對(duì)應(yīng)關(guān)系):A(原象)---B(象)”

對(duì)于映射f:A→B來說,則應(yīng)滿足:

(1)集合A中的每一個(gè)元素,在集合B中都有象,并且象是唯一的;

(2)集合A中不同的元素,在集合B中對(duì)應(yīng)的象可以是同一個(gè);

(3)不要求集合B中的每一個(gè)元素在集合A中都有原象。

注意:映射是針對(duì)自然界中的所有事物而言的,而函數(shù)僅僅是針對(duì)數(shù)字來說的。所以函數(shù)是映射,而映射不一定的函數(shù)

8、函數(shù)的單調(diào)性(局部性質(zhì))及最值

(1、增減函數(shù)

(1)設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對(duì)于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1

(2)如果對(duì)于區(qū)間D上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1f(x2),那么就說f(x)在這個(gè)區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調(diào)減區(qū)間.

注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);函數(shù)的單調(diào)性還有單調(diào)不增,和單調(diào)不減兩種

(2、圖象的特點(diǎn)

如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.

(3、函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法

(A)定義法:

任取x1,x2∈D,且x1

作差f(x1)-f(x2);

變形(通常是因式分解和配方);

定號(hào)(即判斷差f(x1)-f(x2)的正負(fù));

下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).

(B)圖象法(從圖象上看升降)

(C)復(fù)合函數(shù)的單調(diào)性

復(fù)合函數(shù):如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復(fù)合函數(shù)。

復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”

注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.

9:函數(shù)的奇偶性(整體性質(zhì))

(1、偶函數(shù)

一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).

(2、奇函數(shù)

一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).

(3、具有奇偶性的函數(shù)的圖象的特征

偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.

利用定義判斷函數(shù)奇偶性的步驟:

a、首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對(duì)稱;若是不對(duì)稱,則是非奇非偶的函數(shù);若對(duì)稱,則進(jìn)行下面判斷;

b、確定f(-x)與f(x)的關(guān)系;

c、作出相應(yīng)結(jié)論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);

若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù).

(4)利用奇偶函數(shù)的四則運(yùn)算以及復(fù)合函數(shù)的奇偶性

a、在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);

奇函數(shù)的加減仍為奇函數(shù);

奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);

偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);

一奇一偶的乘積是奇函數(shù);

a、復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇。

注意:函數(shù)定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)具有奇偶性的必要條件.首先看函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,若不對(duì)稱則函數(shù)是非奇非偶函數(shù).若對(duì)稱,

(1)再根據(jù)定義判定;

(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;

(3)利用定理,或借助函數(shù)的圖象判定.

10、函數(shù)最值及性質(zhì)的應(yīng)用

(1、函數(shù)的最值

a利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值

b利用圖象求函數(shù)的最大(小)值

c利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值:

如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有最大值f(b);

如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);

(2、函數(shù)的奇偶性與單調(diào)性

奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相同的單調(diào)性;

偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相反的單調(diào)性。

(3、判斷含糊單調(diào)性時(shí)也可以用作商法,過程與作差法類似,區(qū)別在于作差法是與0作比較,作商法是與1作比較。

(4)絕對(duì)值函數(shù)求最值,先分段,再通過各段的單調(diào)性,或圖像求最值。

(5)在判斷函數(shù)的奇偶性時(shí)候,若已知是奇函數(shù)可以直接用f(0)=0,但是f(0)=0并不一定可以判斷函數(shù)為奇函數(shù)。(高一階段可以利用奇函數(shù)f(0)=0)。

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié):基本初等函數(shù)

一、指數(shù)函數(shù)

(一)指數(shù)

指數(shù)與指數(shù)冪的運(yùn)算:

復(fù)習(xí)初中整數(shù)指數(shù)冪的運(yùn)算性質(zhì):

am__an=am+n

(am)n=amn

(a__b)n=anbn

分?jǐn)?shù)指數(shù)冪

正數(shù)的分?jǐn)?shù)指數(shù)冪的

二、對(duì)數(shù)函數(shù)

(一)對(duì)數(shù)

2、對(duì)數(shù)函數(shù)的性質(zhì):

三、冪函數(shù)

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié):函數(shù)的應(yīng)用

方程的根與函數(shù)的零點(diǎn)

1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。

2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn).

3、函數(shù)零點(diǎn)的求法:

(1)(代數(shù)法)求方程的實(shí)數(shù)根;

(2)(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).

4、二次函數(shù)的零點(diǎn):

(1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).

(2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).

(3)△<0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn).

高一數(shù)學(xué)必修一重要公式

【和差化積】

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

【某些數(shù)列前n項(xiàng)和】

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑

余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角

弧長(zhǎng)公式 l=a__r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2__l__r

乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根與系數(shù)的關(guān)系 X1+X2=-b/a X1__X2=c/a 注:韋達(dá)定理

【判別式】

b2-4ac=0 注:方程有兩個(gè)相等的實(shí)根

b2-4ac>0 注:方程有兩個(gè)不等的實(shí)根

b2-4ac<0 注:方程沒有實(shí)根,有共軛復(fù)數(shù)根

【兩角和公式】

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

【倍角公式】

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

【半角公式】

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

【降冪公式】

(sin^2)x=1-cos2x/2

(cos^2)x=i=cos2x/2

【萬能公式】

令tan(a/2)=t

sina=2t/(1+t^2)

cosa=(1-t^2)/(1+t^2)

tana=2t/(1-t^2)

高一數(shù)學(xué)學(xué)習(xí)方法

高中學(xué)生僅僅想學(xué)是不夠的,還必須“會(huì)學(xué)”,要講究科學(xué)的學(xué)習(xí)方法,提高學(xué)習(xí)效率,才能變被動(dòng)學(xué)習(xí)為主動(dòng)學(xué)習(xí),才能提高學(xué)習(xí)成績(jī)。

1、培養(yǎng)良好的學(xué)習(xí)習(xí)慣。

良好的學(xué)習(xí)習(xí)慣包括制定計(jì)劃、課前自學(xué)、專心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)等多個(gè)方面。

① 制定計(jì)劃。

制定計(jì)劃,明確學(xué)習(xí)目的,合理安排時(shí)間,它是推動(dòng)學(xué)生主動(dòng)學(xué)習(xí)和克服困難的內(nèi)在動(dòng)力。但計(jì)劃一定要切實(shí)可行,既有長(zhǎng)遠(yuǎn)打算,又有短期安排,執(zhí)行過程中嚴(yán)格要求自己,磨練學(xué)習(xí)意志。

② 課前自學(xué)。

這是上好新課,取得較好學(xué)習(xí)效果的基礎(chǔ)。課前自學(xué)不僅能培養(yǎng)自學(xué)能力,而且能提高學(xué)習(xí)新課的興趣,掌握學(xué)習(xí)的主動(dòng)權(quán)。自學(xué)不能搞走過場(chǎng),要講究質(zhì)量,力爭(zhēng)在課前把教材弄懂,上課著重聽老師講思路,把握重點(diǎn),突破難點(diǎn),盡可能把問題解決在課堂上。

③ 專心上課。

“學(xué)然后知不足”,這是理解和掌握基本知識(shí)、基本技能和基本方法的關(guān)鍵環(huán)節(jié)。課前自學(xué)過的學(xué)生上課更能專心聽課,他們知道什么地方該詳細(xì)聽,什么地方可以一帶而過,該記的地方才記下來,而不是全盤抄錄,顧此失彼。

④ 獨(dú)立作業(yè)。

這是掌握獨(dú)立思考,分析問題、解決問題,進(jìn)一步加深對(duì)所學(xué)新知識(shí)的理解和對(duì)新技能的必要過程。這一過程也是對(duì)學(xué)生意志毅力的考驗(yàn),通過作業(yè)練習(xí)使學(xué)生對(duì)所學(xué)知識(shí)由“會(huì)”到“熟”。

⑤ 及時(shí)復(fù)習(xí)系統(tǒng)小結(jié)。

這是高效率學(xué)習(xí)的重要一環(huán)。通過反復(fù)閱讀教材,多方面查閱有關(guān)資料,強(qiáng)化對(duì)基本概念知識(shí)體系的理解與記憶,將所學(xué)的新知識(shí)與有關(guān)舊知識(shí)聯(lián)系起來,進(jìn)行分析比效,一邊復(fù)習(xí)一邊將復(fù)習(xí)成果整理在筆記本上,使對(duì)所學(xué)的新知識(shí)由“懂”到“會(huì)”。 小結(jié)要在系統(tǒng)復(fù)習(xí)的基礎(chǔ)上以教材為依據(jù),參照筆記與資料,通過分析、綜合、類比、概括,揭示知識(shí)間的內(nèi)在聯(lián)系,以達(dá)到對(duì)所學(xué)知識(shí)融會(huì)貫通的目的。經(jīng)常進(jìn)行多層次小結(jié),能對(duì)所學(xué)知識(shí)由“活”到“悟”。

2、循序漸進(jìn),防止急躁。

由于學(xué)生年齡較小,閱歷有限,不少學(xué)生容易急躁。有的學(xué)生貪多求快,囫圇吞棗。有的想靠幾天“沖刺”一蹴而就,有的取得一點(diǎn)成績(jī)便洋洋自得,遇到挫折又一蹶不振。學(xué)習(xí)是一個(gè)長(zhǎng)期的鞏固舊知、發(fā)現(xiàn)新知的積累過程,決非一朝一夕可以完成的。許多優(yōu)秀的學(xué)生能取得好成績(jī),其中一個(gè)重要原因是他們的基本功扎實(shí),他們的閱讀、書寫、運(yùn)算技能達(dá)到了相當(dāng)熟練的程度。

3、注意研究學(xué)科特點(diǎn),尋找最佳學(xué)習(xí)方法。

數(shù)學(xué)學(xué)科擔(dān)負(fù)著培養(yǎng)運(yùn)算能力、邏輯思維能力、空間想象能力,以及運(yùn)用所學(xué)知識(shí)分析問題、解決問題的能力的重任。它的特點(diǎn)是具有高度的抽象性、邏輯性和廣泛的適用性,對(duì)能力要求較高。學(xué)習(xí)數(shù)學(xué)一定要講究“活”,只看書不做題不行,只埋頭做題不總結(jié)積累也不行。對(duì)課本知識(shí)既要能鉆進(jìn)去,又要能跳出來,結(jié)合自身特點(diǎn),尋找最佳學(xué)習(xí)方法。方法因人而異,但學(xué)習(xí)的四個(gè)環(huán)節(jié)(預(yù)習(xí)、上課、作業(yè)、復(fù)習(xí))和一個(gè)步驟(歸納總結(jié))是少不了的??傊?,對(duì)學(xué)生數(shù)學(xué)學(xué)習(xí)方法的指導(dǎo),要力求做到轉(zhuǎn)變思想與傳授方法結(jié)合,課上與課下結(jié)合,學(xué)法與教法結(jié)合,教師指導(dǎo)與學(xué)生探求結(jié)合,統(tǒng)一指導(dǎo)與個(gè)別指導(dǎo)結(jié)合,建立縱橫交錯(cuò)的學(xué)法指導(dǎo)網(wǎng)絡(luò),促進(jìn)學(xué)生掌握正確的學(xué)習(xí)方法。

1993678