不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高一學(xué)習(xí)方法 > 高一數(shù)學(xué) > 高一數(shù)學(xué)知識(shí)點(diǎn)重點(diǎn)大全

高一數(shù)學(xué)知識(shí)點(diǎn)重點(diǎn)大全

時(shí)間: 楚琪0 分享

高一數(shù)學(xué)知識(shí)點(diǎn)重點(diǎn)大全2022

總結(jié)是在一段時(shí)間內(nèi)對學(xué)習(xí)和工作生活等表現(xiàn)加以總結(jié)和概括的一種書面材料,它是增長才干的一種好辦法,讓我們一起認(rèn)真地寫一份總結(jié)吧??偨Y(jié)怎么寫才能發(fā)揮它的作用呢?下面是小編給大家?guī)淼母咭粩?shù)學(xué)知識(shí)點(diǎn)重點(diǎn)大全,以供大家參考!

高一數(shù)學(xué)知識(shí)點(diǎn)重點(diǎn)大全

(1)指數(shù)函數(shù)的定義域?yàn)樗袑?shí)數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。

(2)指數(shù)函數(shù)的值域?yàn)榇笥?的實(shí)數(shù)集合。

(3)函數(shù)圖形都是下凹的。

(4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。

(5)可以看到一個(gè)顯然的規(guī)律,就是當(dāng)a從0趨向于無窮大的過程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負(fù)半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個(gè)過渡位置。

(6)函數(shù)總是在某一個(gè)方向上無限趨向于X軸,永不相交。

(7)函數(shù)總是通過(0,1)這點(diǎn)。

(8)顯然指數(shù)函數(shù)無界。

奇偶性

定義

一般地,對于函數(shù)f(x)

(1)如果對于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。

(2)如果對于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。

(3)如果對于函數(shù)定義域內(nèi)的任意一個(gè)x,f(-x)=-f(x)與f(-x)=f(x)同時(shí)成立,那么函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù)。

(4)如果對于函數(shù)定義域內(nèi)的任意一個(gè)x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數(shù)f(x)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù)。

對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負(fù)數(shù),那么我們就可以知道:

排除了為0與負(fù)數(shù)兩種可能,即對于x>0,則a可以是任意實(shí)數(shù);

排除了為0這種可能,即對于x<0和x>0的所有實(shí)數(shù),q不能是偶數(shù);

排除了為負(fù)數(shù)這種可能,即對于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。

總結(jié)起來,就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);

如果a為負(fù)數(shù),則x肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。

在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。

在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。

而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。

由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況.

可以看到:

(1)所有的圖形都通過(1,1)這點(diǎn)。

(2)當(dāng)a大于0時(shí),冪函數(shù)為單調(diào)遞增的,而a小于0時(shí),冪函數(shù)為單調(diào)遞減函數(shù)。

(3)當(dāng)a大于1時(shí),冪函數(shù)圖形下凹;當(dāng)a小于1大于0時(shí),冪函數(shù)圖形上凸。

(4)當(dāng)a小于0時(shí),a越小,圖形傾斜程度越大。

(5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點(diǎn)。

(6)顯然冪函數(shù)無界。

定義:

x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。

范圍:

傾斜角的取值范圍是0°≤α<180°。

理解:

(1)注意“兩個(gè)方向”:直線向上的方向、x軸的正方向;

(2)規(guī)定當(dāng)直線和x軸平行或重合時(shí),它的傾斜角為0度。

意義:

①直線的傾斜角,體現(xiàn)了直線對x軸正向的傾斜程度;

②在平面直角坐標(biāo)系中,每一條直線都有一個(gè)確定的傾斜角;

③傾斜角相同,未必表示同一條直線。

公式:

k=tanα

k>0時(shí)α∈(0°,90°)

k<0時(shí)α∈(90°,180°)

k=0時(shí)α=0°

當(dāng)α=90°時(shí)k不存在

ax+by+c=0(a≠0)傾斜角為A,

則tanA=-a/b,

A=arctan(-a/b)

當(dāng)a≠0時(shí),

傾斜角為90度,即與X軸垂直

人教版高一數(shù)學(xué)必修一知識(shí)點(diǎn)梳理

1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征

(1)棱柱:

定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

表示:用各頂點(diǎn)字母,如五棱柱或用對角線的端點(diǎn)字母,如五棱柱。

幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

(2)棱錐

定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

表示:用各頂點(diǎn)字母,如五棱錐

幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

(3)棱臺(tái):

定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。

分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等

表示:用各頂點(diǎn)字母,如五棱臺(tái)

幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

(4)圓柱:

定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。

幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形。

(5)圓錐:

定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。

幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。

(6)圓臺(tái):

定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。

(7)球體:

定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

2、空間幾何體的三視圖

定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;

俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;

側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

3、空間幾何體的直觀圖——斜二測畫法

斜二測畫法特點(diǎn):

①原來與x軸平行的線段仍然與x平行且長度不變;

②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納

一:集合的含義與表示

1、集合的含義:集合為一些確定的、不同的東西的全體,人們能意識(shí)到這些東西,并且能判斷一個(gè)給定的東西是否屬于這個(gè)整體。

把研究對象統(tǒng)稱為元素,把一些元素組成的總體叫集合,簡稱為集。

2、集合的中元素的三個(gè)特性:

(1)元素的確定性:集合確定,則一元素是否屬于這個(gè)集合是確定的:屬于或不屬于。

(2)元素的互異性:一個(gè)給定集合中的元素是的,不可重復(fù)的。

(3)元素的無序性:集合中元素的位置是可以改變的,并且改變位置不影響集合

3、集合的表示:{……}

(1)用大寫字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

(2)集合的表示方法:列舉法與描述法。

a、列舉法:將集合中的元素一一列舉出來{a,b,c……}

b、描述法:

①區(qū)間法:將集合中元素的公共屬性描述出來,寫在大括號內(nèi)表示集合。

{x?R|x—3>2},{x|x—3>2}

②語言描述法:例:{不是直角三角形的三角形}

③Venn圖:畫出一條封閉的曲線,曲線里面表示集合。

4、集合的分類:

(1)有限集:含有有限個(gè)元素的集合

(2)無限集:含有無限個(gè)元素的集合

(3)空集:不含任何元素的集合

5、元素與集合的關(guān)系:

(1)元素在集合里,則元素屬于集合,即:a?A

(2)元素不在集合里,則元素不屬于集合,即:a¢A

注意:常用數(shù)集及其記法:

非負(fù)整數(shù)集(即自然數(shù)集)記作:N

正整數(shù)集N—或N+

整數(shù)集Z

有理數(shù)集Q

實(shí)數(shù)集R

6、集合間的基本關(guān)系

(1)?!鞍标P(guān)系(1)—子集

定義:如果集合A的任何一個(gè)元素都是集合B的元素,我們說這兩個(gè)集合有包含關(guān)系,稱集合A是集合B的子集。

高一數(shù)學(xué)知識(shí)點(diǎn)重點(diǎn)大全相關(guān)文章:

高一數(shù)學(xué)知識(shí)點(diǎn)匯總大全

高一數(shù)學(xué)知識(shí)點(diǎn)大全

高一數(shù)學(xué)必記知識(shí)點(diǎn)概括

高一數(shù)學(xué)知識(shí)點(diǎn)(考前必看)

高一數(shù)學(xué)必修一知識(shí)點(diǎn)匯總

高一數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)公式總結(jié)

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(人教版)

高一數(shù)學(xué)知識(shí)點(diǎn)小歸納

高一數(shù)學(xué)知識(shí)點(diǎn)全面總結(jié)

1339647