高一數(shù)學(xué)必修一知識點
失敗乃成功之母,重復(fù)是學(xué)習(xí)之母。學(xué)習(xí),需要不斷的重復(fù)重復(fù),重復(fù)學(xué)過的知識,加深印象,其實任何科目的學(xué)習(xí)方法都是不斷重復(fù)學(xué)習(xí)。下面是小編給大家整理的一些高一數(shù)學(xué)知識點,希望對大家有所幫助。
高一數(shù)學(xué)必修一第一章知識點
第一:高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)。
主要是考函數(shù)和導(dǎo)數(shù),這是我們整個高中階段里最核心的板塊,在這個板塊里,重點考察兩個方面:第一個函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個分布重點還包含兩個分析就是二次方程的分布的問題,這是第一個板塊。
第二:平面向量和三角函數(shù)。
重點考察三個方面:一個是劃減與求值,第一,重點掌握公式,重點掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來解三角形。難度比較小。
第三:數(shù)列。
數(shù)列這個板塊,重點考兩個方面:一個通項;一個是求和。
第四:空間向量和立體幾何。
在里面重點考察兩個方面:一個是證明;一個是計算。
高一數(shù)學(xué)必修一知識點梳理
1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。
2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標(biāo)。
即:方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.
3、函數(shù)零點的求法:
1(代數(shù)法)求方程的實數(shù)根;
2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.
4、二次函數(shù)的零點:
二次函數(shù).
(1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.
(2)△=0,方程有兩相等實根,二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.
(3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.
高一年級數(shù)學(xué)高效學(xué)習(xí)方法
1.先看專題一,整數(shù)指數(shù)冪的有關(guān)概念和運(yùn)算性質(zhì),以及一些常用公式,這公式不但在初中要求熟練掌握,高中的課程也是經(jīng)常要用到的。
2.二次函數(shù),二次方程不僅是初中重點,也是難點。在高中還是要學(xué)的內(nèi)容,并且增加了一元二次不等式的解法,這個就要根據(jù)二次函數(shù)圖像來理解了!解不等式的時候就要從先解方程的根開始,二次項系數(shù)大于0時,有個口訣得記下:“大于號取兩邊,小于號取中間”。
3.因式分解的方法這個比較重要,高中也是經(jīng)常用的,比如證明函數(shù)的單調(diào)性,常在做差變形是需要因式分解,還有解一元多次方程的時候往往也先需要分解因式,之后才能求出方程的根。
4.判別式很重要,不僅能判斷二次方程的根有幾個,大于零2個根;等于零1個根;小于零無根。而且還能判斷二次函數(shù)零點的情況,人教版必修一就會學(xué)到。集合里面有許多題也要用到。
高一數(shù)學(xué)必修一知識點相關(guān)文章:
★ 高中數(shù)學(xué)高一數(shù)學(xué)必修一知識點
★ 高一數(shù)學(xué)必修1各章知識點總結(jié)