高一數(shù)學(xué)集合及函數(shù)知識(shí)點(diǎn)
進(jìn)入到高一階段,大家的學(xué)習(xí)壓力都是呈直線上升的,因此平時(shí)的積累也顯得尤為重要,小編高一頻道為大家整理了《新人教版高一數(shù)學(xué)必修一第一章知識(shí)點(diǎn)》希望大家能謹(jǐn)記呦!!
高一數(shù)學(xué)集合及函數(shù)知識(shí)點(diǎn)
一.知識(shí)歸納:
1.集合的有關(guān)概念。
1)集合(集):某些指定的對(duì)象集在一起就成為一個(gè)集合(集).其中每一個(gè)對(duì)象叫元素
注意:①集合與集合的元素是兩個(gè)不同的概念,教科書中是通過描述給出的,這與平面幾何中的點(diǎn)與直線的概念類似。
②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個(gè)集合)。
③集合具有兩方面的意義,即:凡是符合條件的對(duì)象都是它的元素;只要是它的元素就必須符號(hào)條件
2)集合的表示方法:常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數(shù)集:N,Z,Q,R,N
2.子集、交集、并集、補(bǔ)集、空集、全集等概念。
1)子集:若對(duì)x∈A都有x∈B,則AB(或AB);
2)真子集:AB且存在x0∈B但x0A;記為AB(或,且)
3)交集:A∩B={x|x∈A且x∈B}
4)并集:A∪B={x|x∈A或x∈B}
5)補(bǔ)集:CUA={x|xA但x∈U}
注意:①?A,若A≠?,則?A;
②若,,則;
③若且,則A=B(等集)
3.弄清集合與元素、集合與集合的關(guān)系,掌握有關(guān)的術(shù)語和符號(hào),特別要注意以下的符號(hào):(1)與、?的區(qū)別;(2)與的區(qū)別;(3)與的區(qū)別。
4.有關(guān)子集的幾個(gè)等價(jià)關(guān)系
①A∩B=AAB;②A∪B=BAB;③ABCuACuB;
④A∩CuB=空集CuAB;⑤CuA∪B=IAB。
5.交、并集運(yùn)算的性質(zhì)
①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;
③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;
6.有限子集的個(gè)數(shù):設(shè)集合A的元素個(gè)數(shù)是n,則A有2n個(gè)子集,2n-1個(gè)非空子集,2n-2個(gè)非空真子集。
二.例題講解:
【例1】已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},則M,N,P滿足關(guān)系
A)M=NPB)MN=PC)MNPD)NPM
分析一:從判斷元素的共性與區(qū)別入手。
解答一:對(duì)于集合M:{x|x=,m∈Z};對(duì)于集合N:{x|x=,n∈Z}
對(duì)于集合P:{x|x=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的數(shù),而6m+1表示被6除余1的數(shù),所以MN=P,故選B。
分析二:簡(jiǎn)單列舉集合中的元素。
解答二:M={…,,…},N={…,,,,…},P={…,,,…},這時(shí)不要急于判斷三個(gè)集合間的關(guān)系,應(yīng)分析各集合中不同的元素。
=∈N,∈N,∴MN,又=M,∴MN,
=P,∴NP又∈N,∴PN,故P=N,所以選B。
點(diǎn)評(píng):由于思路二只是停留在最初的歸納假設(shè),沒有從理論上解決問題,因此提倡思路一,但思路二易人手。
變式:設(shè)集合,,則(B)
A.M=NB.MNC.NMD.
解:
當(dāng)時(shí),2k+1是奇數(shù),k+2是整數(shù),選B
【例2】定義集合AB={x|x∈A且xB},若A={1,3,5,7},B={2,3,5},則AB的子集個(gè)數(shù)為
A)1B)2C)3D)4
分析:確定集合AB子集的個(gè)數(shù),首先要確定元素的個(gè)數(shù),然后再利用公式:集合A={a1,a2,…,an}有子集2n個(gè)來求解。
解答:∵AB={x|x∈A且xB},∴AB={1,7},有兩個(gè)元素,故AB的子集共有22個(gè)。選D。
變式1:已知非空集合M{1,2,3,4,5},且若a∈M,則6?a∈M,那么集合M的個(gè)數(shù)為
A)5個(gè)B)6個(gè)C)7個(gè)D)8個(gè)
變式2:已知{a,b}A{a,b,c,d,e},求集合A.
解:由已知,集合中必須含有元素a,b.
集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.
評(píng)析本題集合A的個(gè)數(shù)實(shí)為集合{c,d,e}的真子集的個(gè)數(shù),所以共有個(gè).
【例3】已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求實(shí)數(shù)p,q,r的值。
解答:∵A∩B={1}∴1∈B∴12?4×1+r=0,r=3.
∴B={x|x2?4x+r=0}={1,3},∵A∪B={?2,1,3},?2B,∴?2∈A
∵A∩B={1}∴1∈A∴方程x2+px+q=0的兩根為-2和1,
∴∴
變式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求實(shí)數(shù)b,c,m的值.
解:∵A∩B={2}∴1∈B∴22+m?2+6=0,m=-5
∴B={x|x2-5x+6=0}={2,3}∵A∪B=B∴
又∵A∩B={2}∴A={2}∴b=-(2+2)=4,c=2×2=4
∴b=-4,c=4,m=-5
【例4】已知集合A={x|(x-1)(x+1)(x+2)>0},集合B滿足:A∪B={x|x>-2},且A∩B={x|1
分析:先化簡(jiǎn)集合A,然后由A∪B和A∩B分別確定數(shù)軸上哪些元素屬于B,哪些元素不屬于B。
解答:A={x|-21}。由A∩B={x|1-2}可知[-1,1]B,而(-∞,-2)∩B=ф。
綜合以上各式有B={x|-1≤x≤5}
變式1:若A={x|x3+2x2-8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>-4},A∩B=Φ,求a,b。(答案:a=-2,b=0)
點(diǎn)評(píng):在解有關(guān)不等式解集一類集合問題,應(yīng)注意用數(shù)形結(jié)合的方法,作出數(shù)軸來解之。
變式2:設(shè)M={x|x2-2x-3=0},N={x|ax-1=0},若M∩N=N,求所有滿足條件的a的集合。
解答:M={-1,3},∵M(jìn)∩N=N,∴NM
①當(dāng)時(shí),ax-1=0無解,∴a=0②
綜①②得:所求集合為{-1,0,}
【例5】已知集合,函數(shù)y=log2(ax2-2x+2)的定義域?yàn)镼,若P∩Q≠Φ,求實(shí)數(shù)a的取值范圍。
分析:先將原問題轉(zhuǎn)化為不等式ax2-2x+2>0在有解,再利用參數(shù)分離求解。
解答:(1)若,在內(nèi)有有解
令當(dāng)時(shí),
所以a>-4,所以a的取值范圍是
變式:若關(guān)于x的方程有實(shí)根,求實(shí)數(shù)a的取值范圍。
解答:
點(diǎn)評(píng):解決含參數(shù)問題的題目,一般要進(jìn)行分類討論,但并不是所有的問題都要討論,怎樣可以避免討論是我們思考此類問題的關(guān)鍵。
【同步練習(xí)題】
一、選擇題(每題4分,共40分)
1、下列四組對(duì)象,能構(gòu)成集合的是()
A某班所有高個(gè)子的學(xué)生B的藝術(shù)家
C一切很大的書D倒數(shù)等于它自身的實(shí)數(shù)
2、集合{a,b,c}的真子集共有個(gè)()
A7B8C9D10
3、若{1,2}A{1,2,3,4,5}則滿足條件的集合A的個(gè)數(shù)是()
A.6B.7C.8D.9
4、若U={1,2,3,4},M={1,2},N={2,3},則CU(M∪N)=()
A.{1,2,3}B.{2}C.{1,3,4}D.{4}
5、方程組的解集是()
A.{x=0,y=1}B.{0,1}C.{(0,1)}D.{(x,y)|x=0或y=1}
6、以下六個(gè)關(guān)系式:,,,,,是空集中,錯(cuò)誤的個(gè)數(shù)是()
A4B3C2D1
7、點(diǎn)的集合M={(x,y)|xy≥0}是指()
A.第一象限內(nèi)的點(diǎn)集B.第三象限內(nèi)的點(diǎn)集
C.第一、第三象限內(nèi)的點(diǎn)集D.不在第二、第四象限內(nèi)的點(diǎn)集
8、設(shè)集合A=,B=,若AB,則的取值范圍是()
ABCD
9、滿足條件M=的集合M的個(gè)數(shù)是()
A1B2C3D4
10、集合,,,且,則有()
AB
CD不屬于P、Q、R中的任意一個(gè)
二、填空題(每題3分,共18分)
11、若,,用列舉法表示B
12、集合A={x|x2+x-6=0},B={x|ax+1=0},若BA,則a=__________
13、設(shè)全集U=,A=,CA=,則=,=。
14、集合,,____________.
15、已知集合A={x|},若A∩R=,則實(shí)數(shù)m的取值范圍是
16、50名學(xué)生做的物理、化學(xué)兩種實(shí)驗(yàn),已知物理實(shí)驗(yàn)做得正確得有40人,化學(xué)實(shí)驗(yàn)做得正確得有31人,兩種實(shí)驗(yàn)都做錯(cuò)得有4人,則這兩種實(shí)驗(yàn)都做對(duì)的有人.
三、解答題(每題10分,共40分)
17、已知集合A={x|x2+2x-8=0},B={x|x2-5x+6=0},C={x|x2-mx+m2-19=0},若B∩C≠Φ,A∩C=Φ,求m的值
18、已知二次函數(shù)()=,A=,試求的解析式
19、已知集合,B=,若,且求實(shí)數(shù)a,b的值。
20、設(shè),集合,,且A=B,求實(shí)數(shù)x,y的值
高一數(shù)學(xué)集合及函數(shù)知識(shí)點(diǎn)
本節(jié)主要包括函數(shù)的模型、函數(shù)的應(yīng)用等知識(shí)點(diǎn)。主要是理解函數(shù)解應(yīng)用題的一般步驟靈活利用函數(shù)解答實(shí)際應(yīng)用題。
1、常見的函數(shù)模型有一次函數(shù)模型、二次函數(shù)模型、指數(shù)函數(shù)模型、對(duì)數(shù)函數(shù)模型、分段函數(shù)模型等。
2、用函數(shù)解應(yīng)用題的基本步驟是:(1)閱讀并且理解題意.(關(guān)鍵是數(shù)據(jù)、字母的實(shí)際意義);(2)設(shè)量建模;(3)求解函數(shù)模型;(4)簡(jiǎn)要回答實(shí)際問題。
常見考法:
本節(jié)知識(shí)在段考和高考中考查的形式多樣,頻率較高,選擇題、填空題和解答題都有。多考查分段函數(shù)和較復(fù)雜的函數(shù)的最值等問題,屬于拔高題,難度較大。
誤區(qū)提醒:
1、求解應(yīng)用性問題時(shí),不僅要考慮函數(shù)本身的定義域,還要結(jié)合實(shí)際問題理解自變量的取值范圍。
2、求解應(yīng)用性問題時(shí),首先要弄清題意,分清條件和結(jié)論,抓住關(guān)鍵詞和量,理順數(shù)量關(guān)系,然后將文字語言轉(zhuǎn)化成數(shù)學(xué)語言,建立相應(yīng)的數(shù)學(xué)模型。
【典型例題】
例1:
(1)某種儲(chǔ)蓄的月利率是0.36%,今存入本金100元,求本金與利息的和(即本息和)y(元)與所存月數(shù)x之間的函數(shù)關(guān)系式,并計(jì)算5個(gè)月后的本息和(不計(jì)復(fù)利).
(2)按復(fù)利計(jì)算利息的一種儲(chǔ)蓄,本金為a元,每期利率為r,設(shè)本利和為y,存期為x,寫出本利和y隨存期x變化的函數(shù)式.如果存入本金1000元,每期利率2.25%,試計(jì)算5期后的本利和是多少?解:(1)利息=本金×月利率×月數(shù).y=100+100×0.36%·x=100+0.36x,當(dāng)x=5時(shí),y=101.8,∴5個(gè)月后的本息和為101.8元.
例2:
某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤(rùn)與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式。
(2)該企業(yè)已籌集到10萬元資金,并全部投入A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能是企業(yè)獲得利潤(rùn),其利潤(rùn)約為多少萬元。(精確到1萬元)。
高一數(shù)學(xué)集合及函數(shù)知識(shí)點(diǎn)
定義:
形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量?jī)鐬橐蜃兞浚笖?shù)為常量的函數(shù)稱為冪函數(shù)。
定義域和值域:
當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)x為不同的數(shù)值時(shí),冪函數(shù)的值域的不同情況如下:在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域
性質(zhì):
對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是r,如果q是偶數(shù),函數(shù)的定義域是[0,+∞),
當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:
排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);
排除了為0這種可能,即對(duì)于x<0和x>0的所有實(shí)數(shù),q不能是偶數(shù);
排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)??偨Y(jié)起來,就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:
如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);
如果a為負(fù)數(shù),則x肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。
在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。
在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。
而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。
由于x大于0是對(duì)a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況.
可以看到:
(1)所有的圖形都通過(1,1)這點(diǎn)。
(2)當(dāng)a大于0時(shí),冪函數(shù)為單調(diào)遞增的,而a小于0時(shí),冪函數(shù)為單調(diào)遞減函數(shù)。
(3)當(dāng)a大于1時(shí),冪函數(shù)圖形下凹;當(dāng)a小于1大于0時(shí),冪函數(shù)圖形上凸。
(4)當(dāng)a小于0時(shí),a越小,圖形傾斜程度越大。
(5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點(diǎn)。
(6)顯然冪函數(shù)。
高一數(shù)學(xué)集合及函數(shù)知識(shí)點(diǎn)相關(guān)文章:
★ 高一數(shù)學(xué)集合與函數(shù)概念知識(shí)點(diǎn)總結(jié)
★ 高一數(shù)學(xué)必修一集合與函數(shù)知識(shí)點(diǎn)分析
★ 數(shù)學(xué)必修1集合與函數(shù)知識(shí)點(diǎn)與學(xué)習(xí)方法
★ 高一數(shù)學(xué)集合知識(shí)點(diǎn)及例題講解
★ 高一數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn):集合與函數(shù)
★ 高一數(shù)學(xué)必修一函數(shù)知識(shí)點(diǎn)(2)
★ 高一數(shù)學(xué)必修一函數(shù)知識(shí)點(diǎn)總結(jié)歸納
★ 高一數(shù)學(xué)必修一集合公式知識(shí)點(diǎn)與學(xué)習(xí)方法