不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高一學(xué)習(xí)方法>高一數(shù)學(xué)>

高一數(shù)學(xué)老師講解的知識點歸納

時間: 贊銳0 分享

課堂上通過老師的教學(xué),理解所學(xué)內(nèi)容在教材中的地位,弄清與前后知識的聯(lián)系等,只有把握住教材,才能掌握學(xué)習(xí)的主動。以下是小編給大家整理的高一數(shù)學(xué)老師講解的知識點歸納,希望大家能夠喜歡!

高一數(shù)學(xué)老師講解的知識點歸納1

一、指數(shù)函數(shù)

(一)指數(shù)與指數(shù)冪的運算

1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

當是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負數(shù)的次方根是一個負數(shù).此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).

當是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù).此時,正數(shù)的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數(shù)沒有偶次方根;0的任何次方根都是0,記作。

注意:當是奇數(shù)時,當是偶數(shù)時,

2.分數(shù)指數(shù)冪

正數(shù)的分數(shù)指數(shù)冪的意義,規(guī)定:

0的正分數(shù)指數(shù)冪等于0,0的負分數(shù)指數(shù)冪沒有意義

指出:規(guī)定了分數(shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.

3.實數(shù)指數(shù)冪的運算性質(zhì)

(二)指數(shù)函數(shù)及其性質(zhì)

1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域為R.

注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負數(shù)、零和1.

2、指數(shù)函數(shù)的圖象和性質(zhì)

高一數(shù)學(xué)老師講解的知識點歸納2

復(fù)數(shù)定義

我們把形如a+bi(a,b均為實數(shù))的數(shù)稱為復(fù)數(shù),其中a稱為實部,b稱為虛部,i稱為虛數(shù)單位。當虛部等于零時,這個復(fù)數(shù)可以視為實數(shù);當z的虛部不等于零時,實部等于零時,常稱z為純虛數(shù)。復(fù)數(shù)域是實數(shù)域的代數(shù)閉包,也即任何復(fù)系數(shù)多項式在復(fù)數(shù)域中總有根。

復(fù)數(shù)表達式

虛數(shù)是與任何事物沒有聯(lián)系的,是絕對的,所以符合的表達式為:

a=a+ia為實部,i為虛部

復(fù)數(shù)運算法則

加法法則:(a+bi)+(c+di)=(a+c)+(b+d)i;

減法法則:(a+bi)-(c+di)=(a-c)+(b-d)i;

乘法法則:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;

除法法則:(a+bi)/(c+di)=[(ac+bd)/(c2+d2)]+[(bc-ad)/(c2+d2)]i.

例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,最終結(jié)果還是0,也就在數(shù)字中沒有復(fù)數(shù)的存在。[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=z是一個函數(shù)。

復(fù)數(shù)與幾何

①幾何形式

復(fù)數(shù)z=a+bi被復(fù)平面上的點z(a,b)確定。這種形式使復(fù)數(shù)的問題可以借助圖形來研究。也可反過來用復(fù)數(shù)的理論解決一些幾何問題。

②向量形式

復(fù)數(shù)z=a+bi用一個以原點O(0,0)為起點,點Z(a,b)為終點的向量OZ表示。這種形式使復(fù)數(shù)四則運算得到恰當?shù)膸缀谓忉尅?/p>

③三角形式

復(fù)數(shù)z=a+bi化為三角形式

高一數(shù)學(xué)老師講解的知識點歸納3

1.函數(shù)的奇偶性

(1)若f(x)是偶函數(shù),那么f(x)=f(-x);

(2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

(3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);

(4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;

(5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

2.復(fù)合函數(shù)的有關(guān)問題

(1)復(fù)合函數(shù)定義域求法:若已知的定義域為[a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

3.函數(shù)圖像(或方程曲線的對稱性)

(1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在圖像上;

(2)證明圖像C1與C2的對稱性,即證明C1上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

(3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲線C1:f(x,y)=0關(guān)于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;

(5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對稱;

(6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對稱;

4.函數(shù)的周期性

(1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

(2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù);

(3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù);

(4)若y=f(x)關(guān)于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù);

(5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);

(6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

5.方程k=f(x)有解k∈D(D為f(x)的值域);

a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

(1)(a>0,a≠1,b>0,n∈R+);

(2)logaN=(a>0,a≠1,b>0,b≠1);

(3)logab的符號由口訣“同正異負”記憶;

(4)alogaN=N(a>0,a≠1,N>0);

6.判斷對應(yīng)是否為映射時,抓住兩點:

(1)A中元素必須都有象且;

(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

7.能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

8.對于反函數(shù),應(yīng)掌握以下一些結(jié)論:

(1)定義域上的單調(diào)函數(shù)必有反函數(shù);

(2)奇函數(shù)的反函數(shù)也是奇函數(shù);

(3)定義域為非單元素集的偶函數(shù)不存在反函數(shù);

(4)周期函數(shù)不存在反函數(shù);

(5)互為反函數(shù)的兩個函數(shù)具有相同的單調(diào)性;

(6)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

9.處理二次函數(shù)的問題勿忘數(shù)形結(jié)合

二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關(guān)系;

10.依據(jù)單調(diào)性

利用一次函數(shù)在區(qū)間上的保號性可解決求一類參數(shù)的范圍問題;

高一數(shù)學(xué)老師講解的知識點歸納相關(guān)文章

高一數(shù)學(xué)老師的教學(xué)總結(jié)

高一數(shù)學(xué)知識點總結(jié)(考前必看)

高一數(shù)學(xué)集合知識點及例題講解

高一數(shù)學(xué)集合知識點匯總

高一數(shù)學(xué)知識點總結(jié)歸納

高一數(shù)學(xué)知識點匯總大全

高一數(shù)學(xué)知識點小歸納

高一數(shù)學(xué)基礎(chǔ)知識學(xué)習(xí)方法歸納

高一數(shù)學(xué)必修1知識點歸納

高一數(shù)學(xué)知識點全面總結(jié)

高一數(shù)學(xué)老師講解的知識點歸納

課堂上通過老師的教學(xué),理解所學(xué)內(nèi)容在教材中的地位,弄清與前后知識的聯(lián)系等,只有把握住教材,才能掌握學(xué)習(xí)的主動。以下是小編給大家整理的高一數(shù)學(xué)老師講解的知識點歸納,希望大家能夠喜歡!高一數(shù)學(xué)老師講解的知
推薦度:
點擊下載文檔文檔為doc格式

精選文章

  • 高一數(shù)學(xué)的單元及必修知識點歸納
    高一數(shù)學(xué)的單元及必修知識點歸納

    聽的時候不能光聽,為了往后復(fù)習(xí),應(yīng)適當?shù)赜心康男缘挠浐霉P記,領(lǐng)會課上老師的主要精神與意圖??茖W(xué)的記筆記可以提45鐘課堂效果。以下是小編給大

  • 高一數(shù)學(xué)必修書的主要知識點分析
    高一數(shù)學(xué)必修書的主要知識點分析

    如果數(shù)學(xué)課沒有一定的速度,那是一種無效學(xué)習(xí)。慢騰騰的學(xué)習(xí)是訓(xùn)練不出思維速度和思維的敏捷性,是培養(yǎng)不出數(shù)學(xué)能力的,這就要求在數(shù)學(xué)學(xué)習(xí)中一定

  • 高一數(shù)學(xué)必修一第三單元復(fù)習(xí)知識點
    高一數(shù)學(xué)必修一第三單元復(fù)習(xí)知識點

    在數(shù)學(xué)課堂中,老師一般少不了提問與板演,有時還伴隨著問題討論,因此可以聽到許多的信息,這些問題是很有價值的。以下是小編給大家整理的高一數(shù)

  • 高一數(shù)學(xué)課本的相關(guān)主要知識點
    高一數(shù)學(xué)課本的相關(guān)主要知識點

    對于那些典型數(shù)學(xué)問題,帶有普遍性的問題都必須及時解決,不能把問題的結(jié)癥遺留下來,甚至沉淀下來,有價值的問題要及時抓住,遺留問題要有針對性

1071224