高考文科數(shù)學知識點梳理歸納
數(shù)學已成為許多國家及地區(qū)的教育范疇中的一部分。它應(yīng)用于不同領(lǐng)域中,包括科學、工程、醫(yī)學、經(jīng)濟學和金融學等。這次小編給大家整理了高考文科數(shù)學知識點梳理歸納,供大家閱讀參考。
高考文科數(shù)學知識點梳理歸納
1、導(dǎo)數(shù)的定義:在點處的導(dǎo)數(shù)記作.
2.導(dǎo)數(shù)的幾何物理意義:曲線在點處切線的斜率
①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。
3.常見函數(shù)的導(dǎo)數(shù)公式:
4.導(dǎo)數(shù)的四則運算法則:
5.導(dǎo)數(shù)的應(yīng)用:
(1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);
注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。
(2)求極值的步驟:
①求導(dǎo)數(shù);
②求方程的根;
③列表:檢驗在方程根的左右的符號,如果左正右負,那么函數(shù)在這個根處取得極大值;如果左負右正,那么函數(shù)在這個根處取得極小值;
(3)求可導(dǎo)函數(shù)值與最小值的步驟:
ⅰ求的根;ⅱ把根與區(qū)間端點函數(shù)值比較,的為值,最小的是最小值。
等差數(shù)列
對于一個數(shù)列{an},如果任意相鄰兩項之差為一個常數(shù),那么該數(shù)列為等差數(shù)列,且稱這一定值差為公差,記為d;從第一項a1到第n項an的總和,記為Sn。
那么,通項公式為,其求法很重要,利用了“疊加原理”的思想:
將以上n-1個式子相加,便會接連消去很多相關(guān)的項,最終等式左邊余下an,而右邊則余下a1和n-1個d,如此便得到上述通項公式。
此外,數(shù)列前n項的和,其具體推導(dǎo)方式較簡單,可用以上類似的疊加的方法,也可以采取迭代的方法,在此,不再復(fù)述。
值得說明的是,前n項的和Sn除以n后,便得到一個以a1為首項,以d/2為公差的新數(shù)列,利用這一特點可以使很多涉及Sn的數(shù)列問題迎刃而解。
等比數(shù)列
對于一個數(shù)列{an},如果任意相鄰兩項之商(即二者的比)為一個常數(shù),那么該數(shù)列為等比數(shù)列,且稱這一定值商為公比q;從第一項a1到第n項an的總和,記為Tn。
那么,通項公式為(即a1乘以q的(n-1)次方,其推導(dǎo)為“連乘原理”的思想:
a2=a1_,
a3=a2_,
a4=a3_,
````````
an=an-1_,
將以上(n-1)項相乘,左右消去相應(yīng)項后,左邊余下an,右邊余下a1和(n-1)個q的乘積,也即得到了所述通項公式。
此外,當q=1時該數(shù)列的前n項和Tn=a1_
當q≠1時該數(shù)列前n項的和Tn=a1_1-q^(n))/(1-q).
(1)總體和樣本
①在統(tǒng)計學中,把研究對象的全體叫做總體.
②把每個研究對象叫做個體.
③把總體中個體的總數(shù)叫做總體容量.
④為了研究總體的有關(guān)性質(zhì),一般從總體中隨機抽取一部分:x1,x2,....,_研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量.
(2)簡單隨機抽樣,也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨
機地抽取調(diào)查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。
(3)簡單隨機抽樣常用的方法:
①抽簽法
②隨機數(shù)表法
③計算機模擬法
在簡單隨機抽樣的樣本容量設(shè)計中,主要考慮:
①總體變異情況;
②允許誤差范圍;
③概率保證程度。
(4)抽簽法:
①給調(diào)查對象群體中的每一個對象編號;
②準備抽簽的工具,實施抽簽;
③對樣本中的每一個個體進行測量或調(diào)查
(1)必然事件:在條件S下,一定會發(fā)生的事件,叫相對于條件S的必然事件;
(2)不可能事件:在條件S下,一定不會發(fā)生的事件,叫相對于條件S的不可能事件;
(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對于條件S的確定事件;
(4)隨機事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機事件;
(5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗,觀察某一事件A是否出現(xiàn),稱n次試驗中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=nnA為事件A出現(xiàn)的概率:對于給定的隨機事件A,如果隨著試驗次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個常數(shù)上,把這個常數(shù)記作P(A),稱為事件A的概率。
(6)頻率與概率的區(qū)別與聯(lián)系:隨機事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗總次數(shù)n的比值nnA,它具有一定的穩(wěn)定性,總在某個常數(shù)附近擺動,且隨著試驗次數(shù)的不斷增多,這種擺動幅度越來越小。我們把這個常數(shù)叫做隨機事件的概率,概率從數(shù)量上反映了隨機事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗的前提下可以近似地作為這個事件的概率。
學數(shù)學的用處
第一,實際生活中數(shù)學學得好可以幫助你在工作上解決工程類或財務(wù)類的技術(shù)問題。就大多數(shù)情況來看,不能解決技術(shù)問題的人不僅收入較差而且還要到基層去從事低等體力勞動,能解決技術(shù)問題的人就可以拿高工資在辦公室當工程師或者財務(wù)人員。
第二,數(shù)學可以使你的大腦變得更加聰明,增加你思維的嚴謹性,另外,數(shù)學對你其它科目的學習也有很大作用。
第三,數(shù)學無處不在,工作學習中都用得著,例如日常逛街買東西都是和數(shù)學有關(guān)的,這時候才能體會到學習數(shù)學的好處。
如何學好數(shù)學
(1)制定學習計劃還是非常有必要的。雖說計劃沒有變化快,但是對于學習沒有自律性和實踐性的同學們來說制定一個適合自己學習方式的學習計劃還是非常有必要的。一個良好的學習時間表或是學習計劃就是成功的基石,如果同學們自律性可以強一些,能夠每天按照計劃表上的時間分工利用好時間,那這個時候的學習效率是不可估量的。
(2)上課認真聽講才可能進步??赡芡瑢W會有不服氣,現(xiàn)在每個班級中都會有一些“極其聰明”的學生,就算是不學習每天上課都在溜號,也能在最后考試的時候取得很好的成績,這就在一定程度上給了很多同學一種誤導(dǎo)那就是上課不用認真聽講也能學的很好。這就大錯特錯了,只有上課聽講才能給自己最大程度的輔導(dǎo)和幫助,課堂就是最好的老師也是最便利的資源。
(3)敢于向老師提問。不僅是在學習數(shù)學的時候,在學習其他課的時候也同樣適用,不要害羞也不要害怕,如果實在不敢在課堂上向老師發(fā)問,那就一定要記好題目和自己不懂的點,下課時候再去問老師??傊釂柺且粋€很好的習慣,不光能讓自己的思路明了,也會給老師留下勤于思考善于提問的好印象。
高考文科數(shù)學知識點梳理歸納相關(guān)文章: