高三數(shù)學知識點總結歸納
很多學生在復習高三數(shù)學知識點時,因為之前沒有做過系統(tǒng)的總結,后面導致復習時整體效率不高,下面小編為大家?guī)砀呷龜?shù)學知識點總結歸納,希望對您有所幫助!
高三數(shù)學知識點總結歸納
求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關點法、參數(shù)法和交軌法等。
1.直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
2.定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。
3.相關點法:用動點Q的坐標x,y表示相關點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。
4.參數(shù)法:當動點坐標x、y之間的直接關系難以找到時,往往先尋找x、y與某一變數(shù)t的關系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
5.交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。
直譯法:求動點軌跡方程的一般步驟
①建系——建立適當?shù)淖鴺讼?
②設點——設軌跡上的任一點P(x,y);
③列式——列出動點p所滿足的關系式;
④代換——依條件的特點,選用距離公式、斜率公式等將其轉化為關于X,Y的方程式,并化簡;
⑤證明——證明所求方程即為符合條件的動點軌跡方程。
高三數(shù)學上學期知識點
1、集合的概念
集合是數(shù)學中最原始的不定義的概念,只能給出,描述性說明:某些制定的且不同的對象集合在一起就稱為一個集合。組成集合的對象叫元素,集合通常用大寫字母A、B、C、…來表示。元素常用小寫字母a、b、c、…來表示。
集合是一個確定的整體,因此對集合也可以這樣描述:具有某種屬性的對象的全體組成的一個集合。
2、元素與集合的關系元素與集合的關系有屬于和不屬于兩種:元素a屬于集合A,記做a∈A;元素a不屬于集合A,記做a?A。
3、集合中元素的特性
(1)確定性:設A是一個給定的集合,x是某一具體對象,則x或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。例如A={0,1,3,4},可知0∈A,6?A。
(2)互異性:“集合張的元素必須是互異的”,就是說“對于一個給定的集合,它的任何兩個元素都是不同的”。
(3)無序性:集合與其中元素的排列次序無關,如集合{a,b,c}與集合{c,b,a}是同一個集合。
4、集合的分類
集合科根據(jù)他含有的元素個數(shù)的多少分為兩類:
有限集:含有有限個元素的集合。如“方程3x+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個數(shù)是可數(shù)的,因此兩個集合是有限集。
無限集:含有無限個元素的集合,如“到平面上兩個定點的距離相等于所有點”“所有的三角形”,組成上述集合的元素不可數(shù)的,因此他們是無限集。
特別的,我們把不含有任何元素的集合叫做空集,記錯F,如{x?R|+1=0}。
5、特定的集合的表示
為了書寫方便,我們規(guī)定常見的數(shù)集用特定的字母表示,下面是幾種常見的數(shù)集表示方法,請牢記。
(1)全體非負整數(shù)的集合通常簡稱非負整數(shù)集(或自然數(shù)集),記做N。
(2)非負整數(shù)集內(nèi)排出0的集合,也稱正整數(shù)集,記做N_或N+。
(3)全體整數(shù)的集合通常簡稱為整數(shù)集Z。
(4)全體有理數(shù)的集合通常簡稱為有理數(shù)集,記做Q。
(5)全體實數(shù)的集合通常簡稱為實數(shù)集,記做R。
學好數(shù)學的技巧有哪些
做數(shù)學題的目的是檢查自己學的知識、方法是否已經(jīng)掌握很好了。如果掌握得不準或有偏差,那么多做題反而鞏固了自己的缺欠,所以要在準確把握住基本知識和方法的基礎上再做一定量的數(shù)學練習是很有必要的。
對于中檔題,尤其要講究做題效益,做完題之后,需要進行一定的“反思”,思考一下本題所用的基礎知識或數(shù)學思考方法是什么等。自己可以自問自己,該題是否還有其他的想法或解法也可以做出來。
做完題之后,要分析方法與解法,善于總結,該解題方法在其他問題時,是否也用到過,然后把它聯(lián)系起來,這樣可以得到更多的經(jīng)驗和教訓,更重要的是要養(yǎng)成善于思考的好習慣,這樣將更利于以后的學習打下扎實的基礎。
當然,學好數(shù)學,如果沒有一定量的練習就不能形成技能。有的同學做完作業(yè),就一推了事,其實這是很不好的習慣,應當學會通過自己獨立檢查來驗證作業(yè)的結果是否正確,這樣不但可以培養(yǎng)自己獨立思考能力,而且對參加各種數(shù)學考試也十分有利。