高三數(shù)學(xué)上冊的知識點(diǎn)以及重難點(diǎn)
.有的同學(xué)只重視解題的數(shù)量而輕視質(zhì)量,表現(xiàn)在做題后不問對錯(cuò),錯(cuò)了不僅要改,還要記下來,分析造成錯(cuò)誤的原因和啟示,尤其是考試試卷更要注意.只有經(jīng)過不斷的改正錯(cuò)誤,日積月累,才能提高.以下是小編給大家整理的高三數(shù)學(xué)上冊的知識點(diǎn)以及重難點(diǎn),希望大家能夠喜歡!
高三數(shù)學(xué)上冊的知識點(diǎn)以及重難點(diǎn)1
(1)不等關(guān)系
感受在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,了解不等式(組)的實(shí)際背景。
(2)一元二次不等式
①經(jīng)歷從實(shí)際情境中抽象出一元二次不等式模型的過程。
②通過函數(shù)圖象了解一元二次不等式與相應(yīng)函數(shù)、方程的聯(lián)系。
③會解一元二次不等式,對給定的一元二次不等式,嘗試設(shè)計(jì)求解的程序框圖。
(3)二元一次不等式組與簡單線性規(guī)劃問題
①從實(shí)際情境中抽象出二元一次不等式組。
②了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組(參見例2)。
③從實(shí)際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決(參見例3)。
(4)基本不等式:。
①探索并了解基本不等式的證明過程。
②會用基本不等式解決簡單的(小)值問題。
高三數(shù)學(xué)上冊的知識點(diǎn)以及重難點(diǎn)2
復(fù)數(shù)中的難點(diǎn)
(1)復(fù)數(shù)的向量表示法的運(yùn)算.對于復(fù)數(shù)的向量表示有些學(xué)生掌握得不好,對向量的運(yùn)算的幾何意義的靈活掌握有一定的困難.對此應(yīng)認(rèn)真體會復(fù)數(shù)向量運(yùn)算的幾何意義,對其靈活地加以證明.
(2)復(fù)數(shù)三角形式的乘方和開方.有部分學(xué)生對運(yùn)算法則知道,但對其靈活地運(yùn)用有一定的困難,特別是開方運(yùn)算,應(yīng)對此認(rèn)真地加以訓(xùn)練.
(3)復(fù)數(shù)的輻角主值的求法.
(4)利用復(fù)數(shù)的幾何意義靈活地解決問題.復(fù)數(shù)可以用向量表示,同時(shí)復(fù)數(shù)的模和輻角都具有幾何意義,對他們的理解和應(yīng)用有一定難度,應(yīng)認(rèn)真加以體會.
3.復(fù)數(shù)中的重點(diǎn)
(1)理解好復(fù)數(shù)的概念,弄清實(shí)數(shù)、虛數(shù)、純虛數(shù)的不同點(diǎn).
(2)熟練掌握復(fù)數(shù)三種表示法,以及它們間的互化,并能準(zhǔn)確地求出復(fù)數(shù)的模和輻角.復(fù)數(shù)有代數(shù),向量和三角三種表示法.特別是代數(shù)形式和三角形式的互化,以及求復(fù)數(shù)的模和輻角在解決具體問題時(shí)經(jīng)常用到,是一個(gè)重點(diǎn)內(nèi)容.
(3)復(fù)數(shù)的三種表示法的各種運(yùn)算,在運(yùn)算中重視共軛復(fù)數(shù)以及模的有關(guān)性質(zhì).復(fù)數(shù)的運(yùn)算是復(fù)數(shù)中的主要內(nèi)容,掌握復(fù)數(shù)各種形式的運(yùn)算,特別是復(fù)數(shù)運(yùn)算的幾何意義更是重點(diǎn)內(nèi)容.
(4)復(fù)數(shù)集中一元二次方程和二項(xiàng)方程的解法.
高三數(shù)學(xué)上冊的知識點(diǎn)以及重難點(diǎn)3
1. 滿足二元一次不等式(組)的x和y的取值構(gòu)成有序數(shù)對(x,y),稱為二元一次不等式(組)的一個(gè)解,所有這樣的有序數(shù)對(x,y)構(gòu)成的集合稱為二元一次不等式(組)的解集。
2. 二元一次不等式(組)的每一個(gè)解(x,y)作為點(diǎn)的坐標(biāo)對應(yīng)平面上的一個(gè)點(diǎn),二元一次不等式(組)的解集對應(yīng)平面直角坐標(biāo)系中的一個(gè)半平面(平面區(qū)域)。
3. 直線l:Ax+By+C=0(A、B不全為零)把坐標(biāo)平面劃分成兩部分,其中一部分(半個(gè)平面)對應(yīng)二元一次不等式Ax+By+C>0(或≥0),另一部分對應(yīng)二元一次不等式Ax+By+C<0(或≤0)。
4. 已知平面區(qū)域,用不等式(組)表示它,其方法是:在所有直線外任取一點(diǎn)(如本題的原點(diǎn)(0,0)),將其坐標(biāo)代入Ax+By+C,判斷正負(fù)就可以確定相應(yīng)不等式。
5. 一個(gè)二元一次不等式表示的平面區(qū)域是相應(yīng)直線劃分開的半個(gè)平面,一般用特殊點(diǎn)代入二元一次不等式檢驗(yàn)就可以判定,當(dāng)直線不過原點(diǎn)時(shí)常選原點(diǎn)檢驗(yàn),當(dāng)直線過原點(diǎn)時(shí),常選(1,0)或(0,1)代入檢驗(yàn),二元一次不等式組表示的平面區(qū)域是它的各個(gè)不等式所表示的平面區(qū)域的公共部分,注意邊界是實(shí)線還是虛線的含義?!熬€定界,點(diǎn)定域”。
6. 滿足二元一次不等式(組)的整數(shù)x和y的取值構(gòu)成的有序數(shù)對(x,y),稱為這個(gè)二元一次不等式(組)的一個(gè)解。所有整數(shù)解對應(yīng)的點(diǎn)稱為整點(diǎn)(也叫格點(diǎn)),它們都在這個(gè)二元一次不等式(組)表示的平面區(qū)域內(nèi)。
7. 畫二元一次不等式Ax+By+C≥0所表示的平面區(qū)域時(shí),應(yīng)把邊界畫成實(shí)線,畫二元一次不等式Ax+By+C>0所表示的平面區(qū)域時(shí),應(yīng)把邊界畫成虛線。
8. 若點(diǎn)P(x0,y0)與點(diǎn)P1(x1,y1)在直線l:Ax+By+C=0的同側(cè),則Ax0+By0+C與Ax1+Byl+C符號相同;若點(diǎn)P(x0,y0)與點(diǎn)P1(x1,y1)在直線l:Ax+By+C=0的兩側(cè),則Ax0+By0+C與Ax1+Byl+C符號相反。
9. 從實(shí)際問題中抽象出二元一次不等式(組)的步驟是:
(1)根據(jù)題意,設(shè)出變量;
(2)分析問題中的變量,并根據(jù)各個(gè)不等關(guān)系列出常量與變量x,y之間的不等式;
(3)把各個(gè)不等式連同變量x,y有意義的實(shí)際范圍合在一起,組成不等式組。
高三數(shù)學(xué)上冊的知識點(diǎn)以及重難點(diǎn)相關(guān)文章:
★ 高三數(shù)學(xué)重點(diǎn)知識總結(jié)大全
★ 高三年級數(shù)學(xué)知識點(diǎn)整理總結(jié)
★ 高三數(shù)學(xué)知識點(diǎn)總結(jié)
★ 高三數(shù)學(xué)知識點(diǎn)考點(diǎn)總結(jié)大全