不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高三學(xué)習(xí)方法>高三數(shù)學(xué)>

高三數(shù)學(xué)必掌握必備知識點

時間: 贊銳0 分享

相信大家都希望如偉人一樣成為祖國的棟梁。那么,就需要我們支確立自己的目標(biāo),去奮斗。還等什么呢?心動不如行動??禳c奮斗人生吧!高考加油,下面是小編給大家?guī)淼?a href='http://www.athomedrugdetox.com/xuexiff/gaosanshuxue/' target='_blank'>高三數(shù)學(xué)必掌握必備知識點,希望大家能夠喜歡!

高三數(shù)學(xué)必掌握必備知識點1

冪函數(shù)

定義:

形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量 冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。

定義域和值域:

當(dāng)a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:   如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);   如果a為負(fù)數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0 的所有實數(shù)。   當(dāng)x為不同的數(shù)值時,冪函數(shù)的值域的不同情況如下:   在x大于0時,函數(shù)的值域總是大于0的實數(shù)。   在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。   而只有a為正數(shù),0才進入函數(shù)的值域

性質(zhì):

對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時,設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負(fù)數(shù),那么我們就可以知道:

排除了為0與負(fù)數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);

排除了為0這種可能,即對于x<0和x>0的所有實數(shù),q不能是偶數(shù);

排除了為負(fù)數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負(fù)數(shù)。

總結(jié)起來,就可以得到當(dāng)a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:

如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);

如果a為負(fù)數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0 的所有實數(shù)。

在x大于0時,函數(shù)的值域總是大于0的實數(shù)。

在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。

而只有a為正數(shù),0才進入函數(shù)的值域。

由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況.

可以看到:

(1)所有的圖形都通過(1,1)這點。

(2)當(dāng)a大于0時,冪函數(shù)為單調(diào)遞增的,而a小于0時,冪函數(shù)為單調(diào)遞減函數(shù)。

(3)當(dāng)a大于1時,冪函數(shù)圖形下凹;當(dāng)a小于1大于0時,冪函數(shù)圖形上凸。

(4)當(dāng)a小于0時,a越小,圖形傾斜程度越大。

(5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點。

(6)顯然冪函數(shù)無界。

高三數(shù)學(xué)必掌握必備知識點2

反三角函數(shù)主要是三個:

y=arcsin(x),定義域[-1,1] ,值域[-π/2,π/2]圖象用紅色線條;

y=arccos(x),定義域[-1,1] , 值域[0,π],圖象用藍色線條;

y=arctan(x),定義域(-∞,+∞),值域(-π/2,π/2),圖象用綠色線條;

sin(arcsin x)=x,定義域[-1,1],值域 [-1,1] arcsin(-x)=-arcsinx

其他公式:

三角函數(shù)其他公式

arcsin(-x)=-arcsinx

arccos(-x)=π-arccosx

arctan(-x)=-arctanx

arccot(-x)=π-arccotx

arcsinx+arccosx=π/2=arctanx+arccotx

sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)

當(dāng)x∈[—π/2,π/2]時,有arcsin(sinx)=x

當(dāng)x∈[0,π],arccos(cosx)=x

x∈(—π/2,π/2),arctan(tanx)=x

x∈(0,π),arccot(cotx)=x

x〉0,arctanx=π/2-arctan1/x,arccotx類似

若(arctanx+arctany)∈(—π/2,π/2),則arctanx+arctany=arctan(x+y/1-xy)

高三數(shù)學(xué)必掌握必備知識點3

銳角三角函數(shù)公式

sin α=∠α的對邊 / 斜邊

cos α=∠α的鄰邊 / 斜邊

tan α=∠α的對邊 / ∠α的鄰邊

cot α=∠α的鄰邊 / ∠α的對邊

倍角公式

Sin2A=2SinA?CosA

Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

tan2A=(2tanA)/(1-tanA^2)

(注:SinA^2 是sinA的平方 sin2(A) )

三倍角公式

sin3α=4sinα·sin(π/3+α)sin(π/3-α)

cos3α=4cosα·cos(π/3+α)cos(π/3-α)

tan3a = tan a · tan(π/3+a)· tan(π/3-a)

三倍角公式推導(dǎo)

sin3a

=sin(2a+a)

=sin2acosa+cos2asina

輔助角公式

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

tant=B/A

Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

降冪公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

推導(dǎo)公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos^2α

1-cos2α=2sin^2α

1+sinα=(sinα/2+cosα/2)^2

=2sina(1-sin?a)+(1-2sin?a)sina

=3sina-4sin?a

cos3a

=cos(2a+a)

=cos2acosa-sin2asina

=(2cos?a-1)cosa-2(1-sin?a)cosa

=4cos?a-3cosa

sin3a=3sina-4sin?a

=4sina(3/4-sin?a)

=4sina[(√3/2)?-sin?a]

=4sina(sin?60°-sin?a)

=4sina(sin60°+sina)(sin60°-sina)

=4sina_2sin[(60+a)/2]cos[(60°-a)/2]_2sin[(60°-a)/2]cos[(60°-a)/2]

=4sinasin(60°+a)sin(60°-a)

cos3a=4cos?a-3cosa

=4cosa(cos?a-3/4)

=4cosa[cos?a-(√3/2)?]

=4cosa(cos?a-cos?30°)

=4cosa(cosa+cos30°)(cosa-cos30°)

=4cosa_2cos[(a+30°)/2]cos[(a-30°)/2]_{-2sin[(a+30°)/2]sin[(a-30°)/2]}

=-4cosasin(a+30°)sin(a-30°)

=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

=-4cosacos(60°-a)[-cos(60°+a)]

=4cosacos(60°-a)cos(60°+a)

上述兩式相比可得

tan3a=tanatan(60°-a)tan(60°+a)

半角公式

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

sin^2(a/2)=(1-cos(a))/2

cos^2(a/2)=(1+cos(a))/2

tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

三角和

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

兩角和差

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

和差化積

sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

積化和差

sinαsinβ = [cos(α-β)-cos(α+β)] /2

cosαcosβ = [cos(α+β)+cos(α-β)]/2

sinαcosβ = [sin(α+β)+sin(α-β)]/2

cosαsinβ = [sin(α+β)-sin(α-β)]/2

誘導(dǎo)公式

sin(-α) = -sinα

cos(-α) = cosα

tan (—a)=-tanα

sin(π/2-α) = cosα

cos(π/2-α) = sinα

sin(π/2+α) = cosα

cos(π/2+α) = -sinα

sin(π-α) = sinα

cos(π-α) = -cosα

sin(π+α) = -sinα

cos(π+α) = -cosα

tanA= sinA/cosA

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

tan(π-α)=-tanα

tan(π+α)=tanα

誘導(dǎo)公式記背訣竅:奇變偶不變,符號看象限

萬能公式

sinα=2tan(α/2)/[1+tan^(α/2)]

cosα=[1-tan^(α/2)]/1+tan^(α/2)]

tanα=2tan(α/2)/[1-tan^(α/2)]

其它公式

(1)(sinα)^2+(cosα)^2=1

(2)1+(tanα)^2=(secα)^2

(3)1+(cotα)^2=(cscα)^2

證明下面兩式,只需將一式,左右同除(sinα)^2,第二個除(cosα)^2即可

(4)對于任意非直角三角形,總有

tanA+tanB+tanC=tanAtanBtanC

證:

A+B=π-C

tan(A+B)=tan(π-C)

(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

整理可得

tanA+tanB+tanC=tanAtanBtanC

得證

同樣可以得證,當(dāng)x+y+z=nπ(n∈Z)時,該關(guān)系式也成立

由tanA+tanB+tanC=tanAtanBtanC可得出以下結(jié)論

(5)cotAcotB+cotAcotC+cotBcotC=1

(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

(9)sinα+sin(α+2π/n)+sin(α+2π_2/n)+sin(α+2π_3/n)+……+sin[α+2π_(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π_2/n)+cos(α+2π_3/n)+……+cos[α+2π_(n-1)/n]=0 以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

高三數(shù)學(xué)必掌握必備知識點相關(guān)文章

2020屆高三數(shù)學(xué)復(fù)習(xí)必備知識點

高三數(shù)學(xué)的必備知識點總結(jié)

高三數(shù)學(xué)必考知識點匯總

高三數(shù)學(xué)必考知識點復(fù)習(xí)總結(jié)

高三數(shù)學(xué)知識點考點總結(jié)大全

高考數(shù)學(xué)必考知識點考點2020大全總結(jié)

高三年級數(shù)學(xué)必背知識點小結(jié)

高三數(shù)學(xué)知識考點整理集錦

高考數(shù)學(xué)必考知識點考點2020大全

高三數(shù)學(xué)必掌握必備知識點

相信大家都希望如偉人一樣成為祖國的棟梁。那么,就需要我們支確立自己的目標(biāo),去奮斗。還等什么呢?心動不如行動。快點奮斗人生吧!高考加油,下面是小編給大家?guī)淼母呷龜?shù)學(xué)必掌握必備知識點,希望大家能夠喜歡!
推薦度:
點擊下載文檔文檔為doc格式

精選文章

  • 高三數(shù)學(xué)期末復(fù)習(xí)的知識點梳理
    高三數(shù)學(xué)期末復(fù)習(xí)的知識點梳理

    . 閱讀一本不適合自己閱讀的書,比不閱讀還要壞。我們必須會這樣一種本領(lǐng),選擇最有價值、最適合自己所需要的讀物。就好像你的學(xué)習(xí)方法,要選擇最

  • 高三數(shù)學(xué)必拿下的知識點
    高三數(shù)學(xué)必拿下的知識點

    與高一高二不同之處在于,此時復(fù)習(xí)力學(xué)部分知識是為了更好的與高考考綱相結(jié)合,尤其水平中等或中等偏下的學(xué)生,此時需要進行查漏補缺,但也需要同

  • 高三數(shù)學(xué)文科知識點總結(jié)
    高三數(shù)學(xué)文科知識點總結(jié)

    高中學(xué)習(xí)方法其實很簡單,但是這個方法要一直保持下去,才能在最終考試時看到成效,如果對某一科目感興趣或者有天賦異稟,那么學(xué)習(xí)成績會有明顯提

  • 高三數(shù)學(xué)理科知識點歸納
    高三數(shù)學(xué)理科知識點歸納

    仰望天空時,什么都比你高,你會自卑;俯視大地時,什么都比你低,你會自負(fù);只有放寬視野,把天空和大地盡收眼底,才能在蒼穹泛土之間找到你真正的

1070590