不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學習啦>學習方法>高中學習方法>高三學習方法>高三數(shù)學>

高三數(shù)學第一輪復習知識點概括

時間: 贊銳0 分享

歷史使人明智,詩歌使人聰慧,數(shù)學使人精確,哲學使人深刻,倫理使人莊重,邏輯使人善辯。無論才能知識多么卓著,如果缺乏熱情,則無異紙上畫餅充饑,無補于事。以下是小編給大家整理的高三數(shù)學第一輪復習知識點概括,希望能幫助到你!

高三數(shù)學第一輪復習知識點概括1

一個推導

利用錯位相減法推導等比數(shù)列的前n項和:Sn=a1+a1q+a1q2+…+a1qn-1,

同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,

兩式相減得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).

兩個防范

(1)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗證a1≠0.

(2)在運用等比數(shù)列的前n項和公式時,必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導致解題失誤.

三種方法

等比數(shù)列的判斷方法有:

(1)定義法:若an+1/an=q(q為非零常數(shù))或an/an-1=q(q為非零常數(shù)且n≥2且n∈N_),則{an}是等比數(shù)列.

(2)中項公式法:在數(shù)列{an}中,an≠0且a=an·an+2(n∈N_),則數(shù)列{an}是等比數(shù)列.

(3)通項公式法:若數(shù)列通項公式可寫成an=c·qn(c,q均是不為0的常數(shù),n∈N_),則{an}是等比數(shù)列.

注:前兩種方法也可用來證明一個數(shù)列為等比數(shù)列.

高三數(shù)學第一輪復習知識點概括2

1.有關平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復遇到的,而且是以各種各樣的問題(包括論證、計算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復習中,首先應從解決“平行與垂直”的有關問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。

2.判定兩個平面平行的方法:

(1)根據(jù)定義--證明兩平面沒有公共點;

(2)判定定理--證明一個平面內(nèi)的兩條相交直線都平行于另一個平面;

(3)證明兩平面同垂直于一條直線。

3.兩個平面平行的主要性質(zhì):

(1)由定義知:“兩平行平面沒有公共點”;

(2)由定義推得:“兩個平面平行,其中一個平面內(nèi)的直線必平行于另一個平面”;

(3)兩個平面平行的性質(zhì)定理:“如果兩個平行平面同時和第三個平面相交,那么它們的交線平行”;

(4)一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面;

(5)夾在兩個平行平面間的平行線段相等;

(6)經(jīng)過平面外一點只有一個平面和已知平面平行。

高三數(shù)學第一輪復習知識點概括3

1、直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

2、直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

②過兩點的直線的斜率公式:

注意下面四點:

(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關;

(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

3、直線方程

點斜式:

直線斜率k,且過點

注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1。

高三數(shù)學第一輪復習知識點概括相關文章

高三數(shù)學第一輪復習知識點

高三數(shù)學第一輪復習知識點

高考數(shù)學一輪復習知識點總結

高考第一輪復習數(shù)學知識點

高三數(shù)學第一輪復習順序

高三數(shù)學一輪復習知識點及提高成績的好方法!

高考數(shù)學第一輪的復習要點有哪些

高三數(shù)學一輪復習重點及建議

高考數(shù)學知識點歸納整理

高三數(shù)學第一輪復習策略和學習方法

1070511