高三數(shù)學的重要知識難點概括
. 書富如入海,百貨皆有。人之精力,不能兼收盡取,但得春所欲求者爾。故愿學者每次作一意求之。 一個愛書的人,他必定不致于缺少一個忠實的朋友,一個良好的老師,一個可愛的伴侶,一個溫情的安慰者,以下是小編給大家整理的高三數(shù)學的重要知識難點概括,希望能幫助到你!
高三數(shù)學的重要知識難點概括1
(1)直線與平面平行的判定及其性質
線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。
線線平行線面平行
線面平行的性質定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,
那么這條直線和交線平行。線面平行線線平行
(2)平面與平面平行的判定及其性質
兩個平面平行的判定定理
(1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行
(線面平行→面面平行),
(2)如果在兩個平面內(nèi),各有兩組相交直線對應平行,那么這兩個平面平行。
(線線平行→面面平行),
(3)垂直于同一條直線的兩個平面平行,
兩個平面平行的性質定理
(1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行。(面面平行→線面平行)
(2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行。(面面平行→線線平行)
高三數(shù)學的重要知識難點概括2
1、基本概念:
(1)必然事件:在條件S下,一定會發(fā)生的事件,叫相對于條件S的必然事件;
(2)不可能事件:在條件S下,一定不會發(fā)生的事件,叫相對于條件S的不可能事件;
(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對于條件S的確定事件;
(4)隨機事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機事件;
(5)頻數(shù)與頻率:在相同的條件S下重復n次試驗,觀察某一事件A是否出現(xiàn),稱n次試驗中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例
fn(A)=為事件A出現(xiàn)的概率:對于給定的隨機事件A,如果隨著試驗次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個常數(shù)上,把這個常數(shù)記作P(A),稱為事件A的概率。
(6)頻率與概率的區(qū)別與聯(lián)系:隨機事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗總次數(shù)n的比值,它具有一定的穩(wěn)定性,總在某個常數(shù)附近擺動,且隨著試驗次數(shù)的不斷增多,這種擺動幅度越來越小。我們把這個常數(shù)叫做隨機事件的概率,概率從數(shù)量上反映了隨機事件發(fā)生的可能性的大小。頻率在大量重復試驗的前提下可以近似地作為這個事件的概率
3.1.3概率的基本性質
1、基本概念:
(1)事件的包含、并事件、交事件、相等事件
(2)若A∩B為不可能事件,即A∩B=ф,那么稱事件A與事件B互斥;
(3)若A∩B為不可能事件,A∪B為必然事件,那么稱事件A與事件B互為對立事件;
(4)當事件A與B互斥時,滿足加法公式:P(A∪B)=P(A)+P(B);若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)
2、概率的基本性質:
1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;
2)當事件A與B互斥時,滿足加法公式:P(A∪B)=P(A)+P(B);
3)若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);
4)互斥事件與對立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗中不會同時發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;(2)事件A不發(fā)生且事件B發(fā)生;(3)事件A與事件B同時不發(fā)生,而對立事件是指事件A與事件B有且僅有一個發(fā)生,其包括兩種情形;(1)事件A發(fā)生B不發(fā)生;(2)事件B發(fā)生事件A不發(fā)生,對立事件互斥事件的特殊情形。
3.2.1—3.2.2古典概型及隨機數(shù)的產(chǎn)生
1、(1)古典概型的使用條件:試驗結果的有限性和所有結果的等可能性。
(2)古典概型的解題步驟;
①求出總的基本事件數(shù);
②求出事件A所包含的基本事件數(shù),然后利用公式P(A)
3.3.1—3.3.2幾何概型及均勻隨機數(shù)的產(chǎn)生
1、基本概念:
(1)幾何概率模型:如果每個事件發(fā)生的概率只與構成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型;
(2)幾何概型的概率公式:
P(A)=
(3)幾何概型的特點:1)試驗中所有可能出現(xiàn)的結果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等.
高三數(shù)學的重要知識難點概括3
空間中的平行問題
(1)直線與平面平行的判定及其性質
線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。線線平行線面平行
線面平行的性質定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。
線面平行線線平行
(2)平面與平面平行的判定及其性質
兩個平面平行的判定定理(1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行(線面平行→面面平行),
(2)如果在兩個平面內(nèi),各有兩組相交直線對應平行,那么這兩個平面平行。(線線平行→面面平行),
(3)垂直于同一條直線的兩個平面平行,
兩個平面平行的性質定理(1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行。(面面平行→線面平行)
(2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行。(面面平行→線線平行)
空間中的垂直問題
(1)線線、面面、線面垂直的定義
①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。
②線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直。
③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。
(2)垂直關系的判定和性質定理
①線面垂直判定定理和性質定理
判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面。
性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。
②面面垂直的判定定理和性質定理
判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直。
性質定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面。
空間角問題
(1)直線與直線所成的角
①兩平行直線所成的角:規(guī)定為。
②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。
③兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。
(2)直線和平面所成的角
①平面的平行線與平面所成的角:規(guī)定為。
②平面的垂線與平面所成的角:規(guī)定為。
③平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個平面所成的角。
求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”。
在“作角”時依定義關鍵作射影,由射影定義知關鍵在于斜線上一點到面的垂線,
解題時,注意挖掘題設中兩個信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質易得垂線。
(3)二面角和二面角的平面角
①二面角的定義:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。
②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。
③直二面角:平面角是直角的二面角叫直二面角。兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角
④求二面角的方法
定義法:在棱上選擇有關點,過這個點分別在兩個面內(nèi)作垂直于棱的射線得到平面角
垂面法:已知二面角內(nèi)一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角
空間直角坐標系
(1)定義:如圖,是單位正方體.以A為原點,分別以OD,O,OB的方向為正方向,
建立三條數(shù)軸。這時建立了一個空間直角坐標系Oxyz.
1)O叫做坐標原點2)x軸,y軸,z軸叫做坐標軸.3)過每兩個坐標軸的平面叫做坐標面。
(2)右手表示法:令右手大拇指、食指和中指相互垂直時,可能形成的位置。大拇指指向為x軸正方向,食指指向為y軸正向,中指指向則為z軸正向,這樣也可以決定三軸間的相位置。
(3)任意點坐標表示:空間一點M的坐標可以用有序實數(shù)組來表示,有序實數(shù)組叫做點M在此空間直角坐標系中的坐標,記作(x叫做點M的橫坐標,y叫做點M的縱坐標,z叫做點M的豎坐標)
(4)空間兩點距離坐標公式