高中數(shù)學(xué)必修四知識(shí)點(diǎn)
不去耕耘,不去播種,再肥的沃土也長不出莊稼,不去奮斗,不去創(chuàng)造,再美的青春也結(jié)不出碩果。不要讓追求之舟停泊在幻想的港灣,而應(yīng)揚(yáng)起奮斗的風(fēng)帆,駛向現(xiàn)實(shí)生活的大海。那么接下來給大家分享一些高中數(shù)學(xué)必修四知識(shí)點(diǎn),希望對大家有所幫助。
高中數(shù)學(xué)必修四知識(shí)1
(一)、映射、函數(shù)、反函數(shù)
1、對應(yīng)、映射、函數(shù)三個(gè)概念既有共性又有區(qū)別,映射是一種特殊的對應(yīng),而函數(shù)又是一種特殊的映射.
2、對于函數(shù)的概念,應(yīng)注意如下幾點(diǎn):
(1)掌握構(gòu)成函數(shù)的三要素,會(huì)判斷兩個(gè)函數(shù)是否為同一函數(shù).
(2)掌握三種表示法——列表法、解析法、圖象法,能根實(shí)際問題尋求變量間的函數(shù)關(guān)系式,特別是會(huì)求分段函數(shù)的解析式.
(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復(fù)合函數(shù),其中g(shù)(x)為內(nèi)函數(shù),f(u)為外函數(shù).
3、求函數(shù)y=f(x)的反函數(shù)的一般步驟:
(1)確定原函數(shù)的值域,也就是反函數(shù)的定義域;
(2)由y=f(x)的解析式求出x=f-1(y);
(3)將x,y對換,得反函數(shù)的習(xí)慣表達(dá)式y(tǒng)=f-1(x),并注明定義域.
注意①:對于分段函數(shù)的反函數(shù),先分別求出在各段上的反函數(shù),然后再合并到一起.
②熟悉的應(yīng)用,求f-1(x0)的值,合理利用這個(gè)結(jié)論,可以避免求反函數(shù)的過程,從而簡化運(yùn)算.
(二)、函數(shù)的解析式與定義域
1、函數(shù)及其定義域是不可分割的整體,沒有定義域的函數(shù)是不存在的,因此,要正確地寫出函數(shù)的解析式,必須是在求出變量間的對應(yīng)法則的同時(shí),求出函數(shù)的定義域.求函數(shù)的定義域一般有三種類型:
(1)有時(shí)一個(gè)函數(shù)來自于一個(gè)實(shí)際問題,這時(shí)自變量x有實(shí)際意義,求定義域要結(jié)合實(shí)際意義考慮;
(2)已知一個(gè)函數(shù)的解析式求其定義域,只要使解析式有意義即可.如:
①分式的分母不得為零;
②偶次方根的被開方數(shù)不小于零;
③對數(shù)函數(shù)的真數(shù)必須大于零;
④指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)必須大于零且不等于1;
⑤三角函數(shù)中的正切函數(shù)y=tanx(x∈R,且k∈Z),余切函數(shù)y=cotx(x∈R,x≠kπ,k∈Z)等.
應(yīng)注意,一個(gè)函數(shù)的解析式由幾部分組成時(shí),定義域?yàn)楦鞑糠钟幸饬x的自變量取值的公共部分(即交集).
(3)已知一個(gè)函數(shù)的定義域,求另一個(gè)函數(shù)的定義域,主要考慮定義域的深刻含義即可.
已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時(shí)f(x)的定義域,即g(x)的值域.
2、求函數(shù)的解析式一般有四種情況
(1)根據(jù)某實(shí)際問題需建立一種函數(shù)關(guān)系時(shí),必須引入合適的變量,根據(jù)數(shù)學(xué)的有關(guān)知識(shí)尋求函數(shù)的解析式.
(2)有時(shí)題設(shè)給出函數(shù)特征,求函數(shù)的解析式,可采用待定系數(shù)法.比如函數(shù)是一次函數(shù),可設(shè)f(x)=ax+b(a≠0),其中a,b為待定系數(shù),根據(jù)題設(shè)條件,列出方程組,求出a,b即可.
(3)若題設(shè)給出復(fù)合函數(shù)f[g(x)]的表達(dá)式時(shí),可用換元法求函數(shù)f(x)的表達(dá)式,這時(shí)必須求出g(x)的值域,這相當(dāng)于求函數(shù)的定義域.
(4)若已知f(x)滿足某個(gè)等式,這個(gè)等式除f(x)是未知量外,還出現(xiàn)其他未知量(如f(-x),等),必須根據(jù)已知等式,再構(gòu)造其他等式組成方程組,利用解方程組法求出f(x)的表達(dá)式.
高中數(shù)學(xué)必修四知識(shí)2
【公式一】
設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
【公式二】
設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
【公式三】
任意角α與-α的三角函數(shù)值之間的關(guān)系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
【公式四】
利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
【公式五】
利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
高中數(shù)學(xué)必修四知識(shí)3
立體幾何初步
(1)棱柱:
定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點(diǎn)字母,如五棱柱或用對角線的端點(diǎn)字母,如五棱柱
幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等
表示:用各頂點(diǎn)字母,如五棱錐
幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。
(3)棱臺(tái):
定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等
表示:用各頂點(diǎn)字母,如五棱臺(tái)
幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)
(4)圓柱:
定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體
幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體
幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。
(6)圓臺(tái):
定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。
(7)球體:
定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。
高中數(shù)學(xué)必修四知識(shí)4
單調(diào)性
⑴若導(dǎo)數(shù)大于零,則單調(diào)遞增;若導(dǎo)數(shù)小于零,則單調(diào)遞減;導(dǎo)數(shù)等于零為函數(shù)駐點(diǎn),不一定為極值點(diǎn)。需代入駐點(diǎn)左右兩邊的數(shù)值求導(dǎo)數(shù)正負(fù)判斷單調(diào)性。
⑵若已知函數(shù)為遞增函數(shù),則導(dǎo)數(shù)大于等于零;若已知函數(shù)為遞減函數(shù),則導(dǎo)數(shù)小于等于零。
根據(jù)微積分基本定理,對于可導(dǎo)的函數(shù),有:
如果函數(shù)的導(dǎo)函數(shù)在某一區(qū)間內(nèi)恒大于零(或恒小于零),那么函數(shù)在這一區(qū)間內(nèi)單調(diào)遞增(或單調(diào)遞減),這種區(qū)間也稱為函數(shù)的單調(diào)區(qū)間。導(dǎo)函數(shù)等于零的點(diǎn)稱為函數(shù)的駐點(diǎn),在這類點(diǎn)上函數(shù)可能會(huì)取得極大值或極小值(即極值可疑點(diǎn))。進(jìn)一步判斷則需要知道導(dǎo)函數(shù)在附近的符號。對于滿足的一點(diǎn),如果存在使得在之前區(qū)間上都大于等于零,而在之后區(qū)間上都小于等于零,那么是一個(gè)極大值點(diǎn),反之則為極小值點(diǎn)。
x變化時(shí)函數(shù)(藍(lán)色曲線)的切線變化。函數(shù)的導(dǎo)數(shù)值就是切線的斜率,綠色代表其值為正,紅色代表其值為負(fù),黑色代表值為零。
凹凸性
可導(dǎo)函數(shù)的凹凸性與其導(dǎo)數(shù)的單調(diào)性有關(guān)。如果函數(shù)的導(dǎo)函數(shù)在某個(gè)區(qū)間上單調(diào)遞增,那么這個(gè)區(qū)間上函數(shù)是向下凹的,反之則是向上凸的。如果二階導(dǎo)函數(shù)存在,也可以用它的正負(fù)性判斷,如果在某個(gè)區(qū)間上恒大于零,則這個(gè)區(qū)間上函數(shù)是向下凹的,反之這個(gè)區(qū)間上函數(shù)是向上凸的。曲線的凹凸分界點(diǎn)稱為曲線的拐點(diǎn)。
高中數(shù)學(xué)必修四知識(shí)5
導(dǎo)數(shù):導(dǎo)數(shù)的意義-導(dǎo)數(shù)公式-導(dǎo)數(shù)應(yīng)用(極值最值問題、曲線切線問題)
1、導(dǎo)數(shù)的定義:在點(diǎn)處的導(dǎo)數(shù)記作.
2.導(dǎo)數(shù)的幾何物理意義:曲線在點(diǎn)處切線的斜率
①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。
3.常見函數(shù)的導(dǎo)數(shù)公式:①;②;③;
⑤;⑥;⑦;⑧。
4.導(dǎo)數(shù)的四則運(yùn)算法則:
5.導(dǎo)數(shù)的應(yīng)用:
(1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);
注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。
(2)求極值的步驟:
①求導(dǎo)數(shù);
②求方程的根;
③列表:檢驗(yàn)在方程根的左右的符號,如果左正右負(fù),那么函數(shù)在這個(gè)根處取得極大值;如果左負(fù)右正,那么函數(shù)在這個(gè)根處取得極小值;
(3)求可導(dǎo)函數(shù)值與最小值的步驟:
ⅰ求的根;ⅱ把根與區(qū)間端點(diǎn)函數(shù)值比較,的為值,最小的是最小值。
高中數(shù)學(xué)必修四知識(shí)點(diǎn)相關(guān)文章:
★ 高一數(shù)學(xué)必修4知識(shí)點(diǎn)
★ 高中數(shù)學(xué)必修四第一章知識(shí)點(diǎn)總結(jié)
★ 高中數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)
★ 高中數(shù)學(xué)高一數(shù)學(xué)必修一知識(shí)點(diǎn)
★ 高中數(shù)學(xué)必修四三角函數(shù)萬能公式歸納
★ 高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
★ 高中數(shù)學(xué)必修1知識(shí)點(diǎn)總結(jié)