高考數(shù)學(xué)必背公式最新(完整版)
關(guān)于高考數(shù)學(xué)必背公式最新(完整版)
數(shù)學(xué)是由一個個公式組成,所以掌握了公式就掌握了數(shù)學(xué)。學(xué)習(xí)數(shù)學(xué)函數(shù)也不例外,下面給大家分享關(guān)于高考數(shù)學(xué)必背公式最新(完整版),歡迎閱讀!
高考數(shù)學(xué)必背公式
1、圓體積=4/3(pi)(r^3)
2、面積=(pi)(r^2)
3、周長=2(pi)r
4、圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2【(a,b)是圓心坐標(biāo)】
5、圓的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】
高中必背88個數(shù)學(xué)公式——橢圓公式
1、橢圓周長公式:l=2πb+4(a-b)
2、橢圓周長定理:橢圓的周長等于該橢圓短半軸,長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差.
3、橢圓面積公式:s=πab
4、橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。
以上橢圓周長、面積公式中雖然沒有出現(xiàn)橢圓周率t,但這兩個公式都是通過橢圓周率t推導(dǎo)演變而來。
高中必背88個數(shù)學(xué)公式——兩角和公式
1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa
2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb
3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)
4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)
高中必背88個數(shù)學(xué)公式——倍角公式
1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga
2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
高中必背88個數(shù)學(xué)公式——半角公式
1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)
2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)
3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))
4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))
高中必背88個數(shù)學(xué)公式——和差化積
1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)
2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)
3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)
4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb
5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb
高中必背88個數(shù)學(xué)公式——等差數(shù)列
1、等差數(shù)列的通項公式為:
an=a1+(n-1)d (1)
2、前n項和公式為:
Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)
從(1)式可以看出,an是n的一次數(shù)函(d≠0)或常數(shù)函數(shù)(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函數(shù)(d≠0)或一次函數(shù)(d=0,a1≠0),且常數(shù)項為0.
在等差數(shù)列中,等差中項:一般設(shè)為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項.
且任意兩項am,an的關(guān)系為:
an=am+(n-m)d
它可以看作等差數(shù)列廣義的通項公式.
3、從等差數(shù)列的定義、通項公式,前n項和公式還可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N__,且m+n=p+q,則有
am+an=ap+aq
Sm-1=(2n-1)an,S2n+1=(2n+1)an+1
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數(shù)列,等等.
和=(首項+末項)__項數(shù)÷2
項數(shù)=(末項-首項)÷公差+1
首項=2和÷項數(shù)-末項
末項=2和÷項數(shù)-首項
項數(shù)=(末項-首項)/公差+1
高中必背88個數(shù)學(xué)公式——等比數(shù)列
1、等比數(shù)列的通項公式是:An=A1__q^(n-1)
2、前n項和公式是:Sn=[A1(1-q^n)]/(1-q)
且任意兩項am,an的關(guān)系為an=am·q^(n-m)
3、從等比數(shù)列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
4、若m,n,p,q∈N__,則有:ap·aq=am·an,
等比中項:aq·ap=2ar ar則為ap,aq等比中項.
記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一個各項均為正數(shù)的等比數(shù)列各項取同底數(shù)數(shù)后構(gòu)成一個等差數(shù)列;反之,以任一個正數(shù)C為底,用一個等差數(shù)列的各項做指數(shù)構(gòu)造冪Can,則是等比數(shù)列.在這個意義下,我們說:一個正項等比數(shù)列與等差數(shù)列是“同構(gòu)”的.
性質(zhì):①若 m、n、p、q∈N,且m+n=p+q,則am·an=ap__aq;
②在等比數(shù)列中,依次每 k項之和仍成等比數(shù)列.
“G是a、b的等比中項”“G^2=ab(G≠0)”.
在等比數(shù)列中,首項A1與公比q都不為零.
高中必背88個數(shù)學(xué)公式——拋物線
1、拋物線:y=ax__+bx+c就是y等于ax的平方加上bx再加上c。
a>0時,拋物線開口向上;a<0時拋物線開口向下;c=0時拋物線經(jīng)過原點;b=0時拋物線對稱軸為y軸。
2、頂點式y(tǒng)=a(x+h)__+k就是y等于a乘以(x+h)的平方+k,-h是頂點坐標(biāo)的x,k是頂點坐標(biāo)的y,一般用于求最大值與最小值。
3、拋物線標(biāo)準(zhǔn)方程:y^2=2px它表示拋物線的焦點在x的正半軸上,焦點坐標(biāo)為(p/2,0)。
4、準(zhǔn)線方程為x=-p/2由于拋物線的焦點可在任意半軸,故共有標(biāo)準(zhǔn)方程:y^2=2pxy^2=-2p__^2=2pyx^2=-2py。
圖形周長、面積、體積公式
長方形的周長=(長+寬)×2
正方形的周長=邊長×4
長方形的面積=長×寬
正方形的面積=邊長×邊長
三角形的面積
已知三角形底a,高h(yuǎn),則S=ah/2
已知三角形三邊a,b,c,半周長p,則S=√[p(p-a)(p-b)(p-c)](海倫公式)(p=(a+b+c)/2)
和:(a+b+c)__(a+b-c)__1/4
已知三角形兩邊a,b,這兩邊夾角C,則S=absinC/2
設(shè)三角形三邊分別為a、b、c,內(nèi)切圓半徑為r
則三角形面積=(a+b+c)r/2
設(shè)三角形三邊分別為a、b、c,外接圓半徑為r
則三角形面積=abc/4r
立體圖形及平面圖形的公式
圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)
圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
拋物線標(biāo)準(zhǔn)方程y2=2pxy2=-2p__2=2pyx2=-2py
直棱柱側(cè)面積S=c__h斜棱柱側(cè)面積S=c'__h
正棱錐側(cè)面積S=1/2c__h'正棱臺側(cè)面積S=1/2(c+c')h'
圓臺側(cè)面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi__r2
圓柱側(cè)面積S=c__h=2pi__h圓錐側(cè)面積S=1/2__c__l=pi__r__l
弧長公式l=a__ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2__l__r
錐體體積公式V=1/3__S__H圓錐體體積公式V=1/3__pi__r2h
斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側(cè)棱長
柱體體積公式V=s__h圓柱體V=pi__r2h
高考理科數(shù)學(xué)一次函數(shù)公式
一、定義與定義式
自變量x和因變量y有如下關(guān)系:y=kx+b 則此時稱y是x的一次函數(shù)。
特別地,當(dāng)b=0時,y是x的正比例函數(shù)。即:y=kx (k為常數(shù),k0)
二、一次函數(shù)的性質(zhì)
1.y的變化值與對應(yīng)的x的變化值成正比例,比值為k
即:y=kx+b (k為任意不為零的實數(shù) b取任何實數(shù))
2.當(dāng)x=0時,b為函數(shù)在y軸上的截距。
三、一次函數(shù)的圖像及性質(zhì)
1.作法與圖形:通過如下3個步驟
(1)列表;
(2)描點;
(3)連線,可以作出一次函數(shù)的圖像一條直線。
因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)
2.性質(zhì):
(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。
(2)一次函數(shù)與y軸交點的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。
3.k,b與函數(shù)圖像所在象限:
當(dāng)k0時,直線必通過一、三象限,y隨x的增大而增大;
當(dāng)k0時,直線必通過二、四象限,y隨x的增大而減小。
當(dāng)b0時,直線必通過一、二象限;
當(dāng)b=0時,直線通過原點
當(dāng)b0時,直線必通過三、四象限。
特別地,當(dāng)b=0時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。
這時,當(dāng)k0時,直線只通過一、三象限;當(dāng)k0時,直線只通過二、四象限。
四、確定一次函數(shù)的表達(dá)式
已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數(shù)的表達(dá)式。
(1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b。
(2)因為在一次函數(shù)上的任意一點P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個方程:y1=kx1+b 和y2=kx2+b
(3)解這個二元一次方程,得到k,b的值。
(4)最后得到一次函數(shù)的表達(dá)式。
五、一次函數(shù)在生活中的應(yīng)用
1.當(dāng)時間t一定,距離s是速度v的一次函數(shù)。s=vt。
2.當(dāng)水池抽水速度f一定,水池中水量g是抽水時間t的一次函數(shù)。設(shè)水池中原有水量S。g=S-ft。
六、常用公式:(不全面,可以在書上找)
1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)
2.求與x軸平行線段的中點:|x1-x2|/2
3.求與y軸平行線段的中點:|y1-y2|/2
4.求任意線段的長:(x1-x2)2+(y1-y2)2 (注:根號下(x1-x2)與(y1-y2)的平方和)