不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學習啦 > 學習方法 > 高中學習方法 > 高考輔導資料 > 高考物理重要的知識點總結大全

高考物理重要的知識點總結大全

時間: 業(yè)鴻0 分享

高考物理重要的知識點總結大全2023

高考中的物理知識點有哪些?哪些知識點是最重要的,最可能出現(xiàn)的呢?看看高考物理的知識點總結吧。下面是小編為大家整理的關于高考物理重要的知識點總結大全,歡迎大家來閱讀。

高考物理重要的知識點總結大全

高考物理知識點總結大全

1.若三個力大小相等方向互成120°,則其合力為零。

2.幾個互不平行的力作用在物體上,使物體處于平衡狀態(tài),則其中一部分力的合力必與其余部分力的合力等大反向。

3.在勻變速直線運動中,任意兩個連續(xù)相等的時間內的位移之差都相等,即Δx=aT2(可判斷物體是否做勻變速直線運動),推廣:xm-xn=(m-n)aT2。

4.在勻變速直線運動中,任意過程的平均速度等于該過程中點時刻的瞬時速度。即vt/2=v平均。

5.對于初速度為零的勻加速直線運動

(1)T末、2T末、3T末、…的瞬時速度之比為:

v1:v2:v3:…:vn=1:2:3:…:n。

(2)T內、2T內、3T內、…的位移之比為:

x1:x2:x3:…:xn=12:22:32:…:n2。

(3)第一個T內、第二個T內、第三個T內、…的位移之比為:

xⅠ:xⅡ:xⅢ:…:xn=1:3:5:…:(2n-1)。

(4)通過連續(xù)相等的位移所用的時間之比:

t1:t2:t3:…:tn=1:(21/2-1):(31/2-21/2):…:[n1/2-(n-1)1/2]。

6.物體做勻減速直線運動,末速度為零時,可以等效為初速度為零的反向的勻加速直線運動。

7.對于加速度恒定的勻減速直線運動對應的正向過程和反向過程的時間相等,對應的速度大小相等(如豎直上拋運動)

8.質量是慣性大小的唯一量度。慣性的大小與物體是否運動和怎樣運動無關,與物體是否受力和怎樣受力無關,慣性大小表現(xiàn)為改變物理運動狀態(tài)的難易程度。

9.做平拋或類平拋運動的物體在任意相等的時間內速度的變化都相等,方向與加速度方向一致(即Δv=at)。

10.做平拋或類平拋運動的物體,末速度的反向延長線過水平位移的中點。

11.物體做勻速圓周運動的條件是合外力大小恒定且方向始終指向圓心,或與速度方向始終垂直。

12.做勻速圓周運動的物體,在所受到的合外力突然消失時,物體將沿圓周的切線方向飛出做勻速直線運動;在所提供的向心力大于所需要的向心力時,物體將做向心運動;在所提供的向心力小于所需要的向心力時,物體將做離心運動。

13.開普勒第一定律的內容是所有的行星圍繞太陽運動的軌道都是橢圓,太陽在橢圓軌道的一個焦點上。開普勒第三定律的內容是所有行星的半長軸的三次方跟公轉周期的平方的比值都相等,即R3/T2=k。

14.地球質量為M,半徑為R,萬有引力常量為G,地球表面的重力加速度為g,則其間存在的一個常用的關系是。(類比其他星球也適用)

15.第一宇宙速度(近地衛(wèi)星的環(huán)繞速度)的表達式v1=(GM/R)1/2=(gR)1/2,大小為7.9m/s,它是發(fā)射衛(wèi)星的最小速度,也是地球衛(wèi)星的最大環(huán)繞速度。隨著衛(wèi)星的高度h的增加,v減小,ω減小,a減小,T增加。

16.第二宇宙速度:v2=11.2km/s,這是使物體脫離地球引力束縛的最小發(fā)射速度。

17.第三宇宙速度:v3=16.7km/s,這是使物體脫離太陽引力束縛的最小發(fā)射速度。

18.對于太空中的雙星,其軌道半徑與自身的質量成反比,其環(huán)繞速度與自身的質量成反比。

19.做功的過程就是能量轉化的過程,做了多少功,就表示有多少能量發(fā)生了轉化,所以說功是能量轉化的量度,以此解題就是利用功能關系解題。

20.滑動摩擦力,空氣阻力等做的功等于力和路程的乘積。

21.靜摩擦力做功的特點:

(1)靜摩擦力可以做正功,可以做負功也可以不做功。

(2)在靜摩擦力做功的過程中,只有機械能的相互轉移(靜摩擦力只起到傳遞機械能的作用),而沒有機械能與其他能量形式的相互轉化。

(3)相互摩擦的系統(tǒng)內,一對靜摩擦力所做的功的總和等于零。

22.滑動摩擦力做功的特點:

(1)滑動摩擦力可以對物體做正功,可以做負功也可以不做功。

(2)一對滑動摩擦力做功的過程中,能量的分配有兩個方面:一是相互摩擦的物體之間的機械能的轉移;二是系統(tǒng)機械能轉化為內能;轉化為內能的量等于滑動摩擦力與相對路程的乘積,即Q=f.Δs相對。

23.若一條直線上有三個點電荷,因相互作用而平衡,其電性及電荷量的定性分布為“兩同夾一異,兩大夾一小”。

24.勻強電場中,任意兩點連線中點的電勢等于這兩點的電勢的平均值。在任意方向上電勢差與距離成正比。

25.正電荷在電勢越高的地方,電勢能越大,負電荷在電勢越高的地方,電勢能越小。

26.電容器充電后和電源斷開,僅改變板間的距離時,場強不變。

27.兩電流相互平行時無轉動趨勢,同向電流相互吸引,異向電流相互排斥;兩電流不平行時,有轉動到相互平行且電流方向相同的趨勢。

28.帶電粒子在磁場中僅受洛倫茲力時做圓周運動的周期與粒子的速率、半徑無關,僅與粒子的質量、電荷和磁感應強度有關。

29.帶電粒子在有界磁場中做圓周運動:

(1)速度偏轉角等于掃過的圓心角。

(2)幾個出射方向:

①粒子從某一直線邊界射入磁場后又從該邊界飛出時,速度與邊界的夾角相等。

②在圓形磁場區(qū)域內,沿徑向射入的粒子,必沿徑向射出——對稱性。

③剛好穿出磁場邊界的條件是帶電粒子在磁場中的軌跡與邊界相切。

(3)運動的時間:軌跡對應的圓心角越大,帶電粒子在磁場中的運動時間就越長,與粒子速度的大小無關。[t=θT/(2π)= θm/(qB)]

30.速度選擇器模型:帶電粒子以速度v射入正交的電場和磁場區(qū)域時,當電場力和磁場力方向相反且滿足v=E/B時,帶電粒子做勻速直線運動(被選擇)與帶電粒子的帶電荷量大小、正負無關,但改變v、B、E中的任意一個量時,粒子將發(fā)生偏轉。

31.回旋加速器

(1)為了使粒子在加速器中不斷被加速,加速電場的周期必須等于回旋周期。

(2)粒子做勻速圓周運動的最大半徑等于D形盒的半徑。

(3)在粒子的質量、電荷量確定的情況下,粒子所能達到的最大動能只與D形盒的半徑和磁感應強度有關,與加速器的電壓無關(電壓只決定了回旋次數(shù))。

(4)將帶電粒子在兩盒之間的運動首尾相連起來是一個初速度為零的勻加速直線運動,帶電粒子每經過電場加速一次,回旋半徑就增大一次,故各次半徑之比為:

1:21/2:31/2:…:n1/2。

32.在沒有外界軌道約束的情況下,帶電粒子在復合場中三個場力(電場力、洛倫磁力、重力)作用下的直線運動必為勻速直線運動;若為勻速圓周運動則必有電場力和重力等大、反向。

33.在閉合電路中,當外電路的任何一個電阻增大(或減小)時,電路的總電阻一定增大(或減小)。

34.滑動變阻器分壓電路中,總電阻變化情況與滑動變阻器串聯(lián)段電阻變化情況相同。

35.若兩并聯(lián)支路的電阻之和保持不變,則當兩支路電阻相等時,并聯(lián)總電阻最大;當兩支路電阻相差最大時,并聯(lián)總電阻最小。

36.電源的輸出功率隨外電阻變化,當內外電阻相等時,電源的輸出功率最大,且最大值Pm=E2/(4r)。

37.導體棒圍繞棒的一端在垂直磁場的平面內做勻速圓周運動而切割磁感線產生的電動勢E=BL2ω/2。

38.對由n匝線圈構成的閉合電路,由于磁通量變化而通過導體某一橫截面的電荷量q=nΔΦ/R。

39.在變加速運動中,當物體的加速度為零時,物體的速度達到最大或最小——常用于導體棒的動態(tài)分析。

40.安培力做多少正功,就有多少電能轉化為其他形式的能量;安培力做多少負功,就有多少其他形式的能量轉化為電能,這些電能在通過純電阻電路時,又會通過電流做功將電能轉化為內能。

41.在Φ-t圖象(或回路面積不變時的B-t圖象)中,圖線的斜率既可以反映電動勢的大小,又可以反映電源的正負極。

42.交流電的產生:計算感應電動勢的最大值用Em=nBSω;計算某一段時間Δt內的感應電動勢的平均值用E平均=nΔΦ/Δt,而E平均不等于對應時間段內初、末位置的算術平均值。即E平均≠E1+E2/2,注意不要漏掉n。

43.只有正弦交流電,物理量的最大值和有效值才存在21/2倍的關系。對于其他的交流電,需根據電流的熱效應來確定有效值。

44.回復力與加速度的大小始終與位移的大小成正比,方向總是與位移方向相反,始終指向平衡位置。

45.做簡諧運動的物體的振動是變速直線運動,因此在一個周期內,物體運動的路程是4A,半個周期內,物體的路程是2A,但在四分之一個周期內運動的路程不一定是A。

46.每一個質點的起振方向都與波源的起振方向相同。

47.對于干涉現(xiàn)象

(1)加強區(qū)始終加強,減弱區(qū)始終減弱。

(2)加強區(qū)的振幅A=A1+A2,減弱區(qū)的振幅A=|A1-A2|。

48.相距半波長的奇數(shù)倍的兩質點,振動情況完全相反;相距半波長的偶數(shù)倍的兩質點,振動情況完全相同。

49.同一質點,經過Δt =nT(n=0、1、2…),振動狀態(tài)完全相同,經過Δt =nT+T/2(n=0、1、2…),振動狀態(tài)完全相反。

50.小孔成像是倒立的實像,像的大小由光屏到小孔的距離而定。

51.根據反射定律,平面鏡轉過一個微小的角度α,法線也隨之轉動α,反射光則轉過2α。

52.光由真空射向三棱鏡后,光線一定向棱鏡的底面偏折,折射率越大,偏折程度越大。通過三棱鏡看物體,看到的是物體的虛像,而且虛像向棱鏡的頂角偏移,如果把棱鏡放在光密介質中,情況則相反。

53.光線通過平行玻璃磚后,不改變光線行進的方向及光束的性質,但會使光線發(fā)生側移,側移量的大小跟入射角、折射率和玻璃磚的厚度有關。

54.光的顏色是由光的頻率決定的,光在介質中的折射率也與光的頻率有關,頻率越大的光折射率越大。

55.用單色光做雙縫干涉實驗時,當兩列光波到達某點的路程差為半波長的偶數(shù)倍時,該處的光互相加強,出現(xiàn)亮條紋;當?shù)竭_某點的路程差為半波長的奇數(shù)倍時,該處的光互相減弱,出現(xiàn)暗條紋。

56.電磁波在介質中的傳播速度跟介質和頻率有關;而機械波在介質中的傳播速度只跟介質有關。

57.質子和中子統(tǒng)稱為核子,相鄰的任何核子間都存著核力,核力為短程力。距離較遠時,核力為零。

58.半衰期的大小由放射性元素的原子核內部本身的因素決定,跟物體所處的物理狀態(tài)或化學狀態(tài)無關。

59.使原子發(fā)生能級躍遷時,入射的若是光子,光子的能量必須等于兩個定態(tài)的能級差或超過電離能;入射的若是電子,電子的能量必須大于或等于兩個定態(tài)的能級差。

60.原子在某一定態(tài)下的能量值為En=E1/n2,該能量包括電子繞核運動的動能和電子與原子核組成的系統(tǒng)的電勢能。

61.動量的變化量的方向與速度變化量的方向相同,與合外力的沖量方向相同,在合外力恒定的情況下,物體動量的變化量方向與物體所受合外力的方向相同,與物體加速度的方向相同。

62. F合Δt=ΔP→F合=ΔP/Δt這是牛頓第二定律的另一種表示形式,表述為物體所受的合外力等于物體動量的變化率。

63.碰撞問題遵循三個原則:

①總動量守恒;

②總動能不增加;

③合理性(保證碰撞的發(fā)生,又保證碰撞后不再發(fā)生碰撞)。

64.完全非彈性碰撞(碰撞后連成一個整體)中,動量守恒,機械能不守恒,且機械能損失最大。

65.爆炸的特點是持續(xù)時間短,內力遠大于外力,系統(tǒng)的動量守恒

高中物理知識點內容

1、重力

由于地球的吸引而使物體受到的力叫做重力。物體受到的重力G與物體質量m的關系是G=mg,g稱為重力加速度或自由落體加速度,與物體所處位置的高低和緯度有關。重力的方向豎直向下,在南北極或赤道上指向地心。物體各部分受到重力的等效作用點叫做重心,重心位置與物體的形狀和質量分布有關。

2、萬有引力

存在于自然界任何兩個物體之間的力。萬有引力F與兩個物體的質量m1 、m2和它們之間距離r的關系是,G稱為引力常量,適用于任何兩個物體,其大小通常取。 萬有引力的方向在兩物體的連線上。

3、彈力

發(fā)生彈性形變的物體,由于要恢復原狀而對與它接觸的物體產生的力。彈簧的彈力F與其形變量x之間的關系是F=kx,k稱為彈簧的勁度系數(shù),單位為N/m,與彈簧的長短、粗細、材料和橫截面積等因素有關。彈力的方向與形變的方向相反。彈簧都有彈性限度,超過彈性限度后,前述力與形變量的關系不再成立。

4、靜摩擦力

兩個相互接觸的物體,當它們發(fā)生相對運動或具有相對運動的趨勢時,在接觸面產生阻礙相對運動或相對運動趨勢的力叫做摩擦力。當兩個物體間只有相對運動的趨勢,而沒有相對運動,這時的摩擦力叫做靜摩擦力。兩個物體間的靜摩擦力有一個限度,兩個物體剛剛開始相對運動時,它們之間的摩擦力稱為最大靜摩擦力。兩個物體間實際發(fā)生的靜摩擦力F在0和最大靜摩擦力Fmax之間。靜摩擦力的方向總是沿著接觸面,并且跟物體相對運動趨勢的方向相反。

5、滑動摩擦力

當一個物體在另一個物體表面滑動時,受到另一個物體阻礙它滑動的力?;瑒幽Σ亮Φ拇笮「鷫毫?兩個物體表面間的垂直作用力)成正比?;瑒幽Σ亮與壓力FN之間的關系是f=uFN,u稱為動摩擦因數(shù),與相互接觸的兩個物體的材料、接觸面的情況有關?;瑒幽Σ亮Φ姆较蚩偸茄刂佑|面,并且跟物體的相對運動方向相反。

6、靜電力

靜止的點電荷之間的力。靜電力F與兩個點電荷q1、q2和它們之間的距離r的關系是,k稱為靜電力常量,其大小為。兩個點電荷帶同種電荷時,它們之間的作用力為斥力;兩個點電荷帶異種電荷時,它們之間的作用力為引力。靜電力也稱庫侖力。

7、電場力

試探電荷(帶電體)在電場中受到的力。電場力F與試探電荷的電荷量q之間的關系是F=Eq,E稱為電場強度,大小由電場本身決定,方向與正電荷所受電場力的方向相同,其單位為N/C。

8、安培力

通電導線在磁場中受到的力。當直導線與勻強磁場方向垂直時,導線所受安培力F與導線中電流強度I,導線的長度L,磁感應強度B之間的關系是F=BIL。安培力的方向可由左手定則確定。

9、洛倫茲力

帶電粒子在磁場中運動時受到的力。當粒子運動的方向與磁感應強度方向垂直時,粒子所受的洛倫茲力與粒子的電荷量q,粒子運動的速度v,磁感應強度B之間的關系是F=qvB。安培力的方向可由左手定則確定。安培力是大量帶電粒子所受洛倫茲力的宏觀表現(xiàn)。

10、分子力

存在于分子間的作用力。分子力比較復雜,分子間同時存在著引力和斥力,當分子間距離為r0時,引力與斥力的合力為0,當r>r0時合力表現(xiàn)為引力,r<r0當時合力表現(xiàn)為斥力,分子間的引力和斥力都隨分子間距離的增大而減小。< p="">

11、核力

存在于原子核內核子之間的一種力。核力是強相互作用的一種表現(xiàn),在原子核尺度內,核力比庫侖力大的多;核力是短程力,作用范圍在之內。

高考的物理知識點總結

一、運動的描述

1.物體模型用質點,忽略形狀和大小;地球公轉當質點,地球自轉要大小。物體位置的變化,準確描述用位移,運動快慢s比t,a用δv與t比。

2.運用一般公式法,平均速度是簡法,中間時刻速度法,初速度零比例法,再加幾何圖像法,求解運動好方法。自由落體是實例,初速為零a等g.豎直上拋知初速,上升最高心有數(shù),飛行時間上下回,整個過程勻減速。中心時刻的速度,平均速度相等數(shù);求加速度有好方,δs等at平方。

3.速度決定物體動,速度加速度方向中,同向加速反向減,垂直拐彎莫前沖。

二、力

1.解力學題堡壘堅,受力分析是關鍵;分析受力性質力,根據效果來處理。

2.分析受力要仔細,定量計算七種力;重力有無看

提示,根據狀態(tài)定彈力;先有彈力后摩擦,相對運動是依據;萬有引力在萬物,電場力存在定無疑;洛侖茲力安培力,二者實質是統(tǒng)一;相互垂直力最大,平行無力要切記。

3.同一直線定方向,計算結果只是“量”,某量方向若未定,計算結果給指明;兩力合力小和大,兩個力成q角夾,平行四邊形定法;合力大小隨q變,只在最大最小間,多力合力合另邊。

多力問題狀態(tài)揭,正交分解來解決,三角函數(shù)能化解。

4.力學問題方法多,整體隔離和假設;整體只需看外力,求解內力隔離做;狀態(tài)相同用整體,否則隔離用得多;即使狀態(tài)不相同,整體牛二也可做;假設某力有或無,根據計算來定奪;極限法抓臨界態(tài),程序法按順序做;正交分解選坐標,軸上矢量盡量多。

三、牛頓運動定律

1.f等ma,牛頓二定律,產生加速度,原因就是力。

合力與a同方向,速度變量定a向,a變小則u可大,只要a與u同向。

2.n、t等力是視重,mg乘積是實重;超重失重視視重,其中不變是實重;加速上升是超重,減速下降也超重;失重由加降減升定,完全失重視重零

四、曲線運動、萬有引力

1.運動軌跡為曲線,向心力存在是條件,曲線運動速度變,方向就是該點切線。

2.圓周運動向心力,供需關系在心里,徑向合力提供足,需mu平方比r,mrw平方也需,供求平衡不心離。

3.萬有引力因質量生,存在于世界萬物中,皆因天體質量大,萬有引力顯神通。衛(wèi)星繞著天體行,快慢運動的衛(wèi)星,均由距離來決定,距離越近它越快,距離越遠越慢行,同步衛(wèi)星速度定,定點赤道上空行。

五、機械能與能量

1.確定狀態(tài)找動能,分析過程找力功,正功負功加一起,動能增量與它同。

2.明確兩態(tài)機械能,再看過程力做功,“重力”之外功為零,初態(tài)末態(tài)能量同。

3.確定狀態(tài)找量能,再看過程力做功。有功就有能轉變,初態(tài)末態(tài)能量同。

六、電場

1.庫侖定律電荷力,萬有引力引場力,好像是孿生兄弟,kqq與r平方比。

2.電荷周圍有電場,f比q定義場強。kq比r2點電荷,u比d是勻強電場。

電場強度是矢量,正電荷受力定方向。描繪電場用場線,疏密表示弱和強。

場能性質是電勢,場線方向電勢降。場力做功是qu,動能定理不能忘。

4.電場中有等勢面,與它垂直畫場線。方向由高指向低,面密線密是特點。

七、恒定電流

1.電荷定向移動時,電流等于q比t。自由電荷是內因,兩端電壓是條件。

正荷流向定方向,串電流表來計量。電源外部正流負,從負到正經內部。

2.電阻定律三因素,溫度不變才得出,控制變量來論述,rl比s等電阻。

電流做功uit,電熱i平方rt。電功率,w比t,電壓乘電流也是。

3.基本電路聯(lián)串并,分壓分流要分明。復雜電路動腦筋,等效電路是關鍵。

4.閉合電路部分路,外電路和內電路,遵循定律屬歐姆。

路端電壓內壓降,和就等電動勢,除于總阻電流是。

八、磁場

1.磁體周圍有磁場,n極受力定方向;電流周圍有磁場,安培定則定方向。

2.f比il是場強,φ等bs磁通量,磁通密度φ比s,磁場強度之名異。

3.bil安培力,相互垂直要注意。

4.洛侖茲力安培力,力往左甩別忘記。

九、電磁感應

1.電磁感應磁生電,磁通變化是條件。回路閉合有電流,回路斷開是電源。

感應電動勢大小,磁通變化率知曉。

2.楞次定律定方向,阻礙變化是關鍵。導體切割磁感線,右手定則更方便。

3.楞次定律是抽象,真正理解從三方,阻礙磁通增和減,相對運動受反抗,自感電流想阻擋,能量守恒理應當。楞次先看原磁場,感生磁場將何向,全看磁通增或減,安培定則知i向。

十、交流電

1.勻強磁場有線圈,旋轉產生交流電。電流電壓電動勢,變化規(guī)律是弦線。

中性面計時是正弦,平行面計時是余弦。

2.nbsω是最大值,有效值用熱量來計算。

3.變壓器供交流用,恒定電流不能用。

理想變壓器,初級ui值,次級ui值,相等是原理。

電壓之比值,正比匝數(shù)比;電流之比值,反比匝數(shù)比。

運用變壓比,若求某匝數(shù),化為匝伏比,方便地算出。

遠距輸電用,升壓降流送,否則耗損大,用戶后降壓。

十一、氣態(tài)方程

研究氣體定質量,確定狀態(tài)找參量。絕對溫度用大t,體積就是容積量。

壓強分析封閉物,牛頓定律幫你忙。狀態(tài)參量要找準,pv比t是恒量。

十二、熱力學定律

1.第一定律熱力學,能量守恒好感覺。內能變化等多少,熱量做功不能少。

正負符號要準確,收入支出來理解。對內做功和吸熱,內能增加皆正值;對外做功和放熱,內能減少皆負值。

2.熱力學第二定律,熱傳遞是不可逆,功轉熱和熱轉功,具有方向性不逆。

十三、機械振動

1.簡諧振動要牢記,o為起點算位移,回復力的方向指,始終向平衡位置,

大小正比于位移,平衡位置u大極。

2.o點對稱別忘記,振動強弱是振幅,振動快慢是周期,一周期走4a路,單擺周期l比g,再開方根乘2p,秒擺周期為2秒,擺長約等長1米。

到質心擺長行,單擺具有等時性。

3.振動圖像描方向,從底往頂是向上,從頂往底是下向;振動圖像描位移,頂點底點大位移,正負符號方向指。

十四、機械波

1.左行左坡上,右行右坡上。峰點谷點無方向。

2.順著傳播方向吧,從谷往峰想上爬,腳底總得往下蹬,上下振動遷不動。

3.不同時刻的圖像,δt四分一或三,質點動向疑惑散,s等vt派用場。

十五、光學

1.自行發(fā)光是光源,同種均勻直線傳。若是遇見障礙物,傳播路徑要改變。

反射折射兩定律,折射定律是重點。光介質有折射率,(它的)定義是正弦比值,還可運用速度比,波長比值也使然。

2.全反射,要牢記,入射光線在光密。入射角大于臨界角,折射光線無處覓。

十六、物理光學

1.光是一種電磁波,能產生干涉和衍射。衍射有單縫和小孔,干涉有雙縫和薄膜。單縫衍射中間寬,干涉(條紋)間距差不多。小孔衍射明暗環(huán),薄膜干涉用處多。它可用來測工件,還可制成增透膜。泊松亮斑是衍射,干涉公式要把握?!歼x修3-4〗

2.光照金屬能生電,入射光線有極限。光電子動能大和小,與光子頻率有關聯(lián)。光電子數(shù)目多和少,與光線強弱緊相連。光電效應瞬間能發(fā)生,極限頻率取決逸出功。

十七、動量

1.確定狀態(tài)找動量,分析過程找沖量,同一直線定方向,計算結果只是“量”,某量方向若未定,計算結果給指明。

2.確定狀態(tài)找動量,分析過程找沖量,外力沖量若為零,初態(tài)末態(tài)動量同。

十八、原子原子核

1.原子核,中央站,電子分層圍它轉;向外躍遷為激發(fā),輻射光子向內遷;光子能量hn,能級差值來計算。

2.原子核,能改變,αβ兩衰變。α粒是氦核,電子流是β射線。

γ光子不單有,伴隨衰變而出現(xiàn)。鈾核分開是裂變,中子撞擊是條件。

裂變可造原子彈,還可用它來發(fā)電。輕核聚合是聚變,溫度極高是條件。

變可以造氫彈,還是太陽能量源;和平利用前景好,可惜至今未實現(xiàn)。

1831452