中考數(shù)學(xué)如何備考
在復(fù)習(xí)中,很重要的一點(diǎn)是要有針對性,提高效率,避免做無用功。在對基本的知識(shí)點(diǎn)融會(huì)貫通的基礎(chǔ)上,認(rèn)真研究考綱,不僅要明確考試的內(nèi)容,更要對考綱對知識(shí)點(diǎn)的要求了然于心。下面是小編為大家整理的關(guān)于中考數(shù)學(xué)如何備考,希望對您有所幫助。歡迎大家閱讀參考學(xué)習(xí)!
一、吃透考綱把握動(dòng)向
在復(fù)習(xí)中,很重要的一點(diǎn)是要有針對性,提高效率,避免做無用功。在對基本的知識(shí)點(diǎn)融會(huì)貫通的基礎(chǔ)上,認(rèn)真研究考綱,不僅要明確考試的內(nèi)容,更要對考綱對知識(shí)點(diǎn)的要求了然于心。平時(shí)多關(guān)注近年中考試題的變化及其相應(yīng)的評價(jià)報(bào)告,多層次、多方位地了解中考信息,使復(fù)習(xí)有的放矢,事半功倍。
二、圍繞課本注重基礎(chǔ)
從近幾年的上海中考數(shù)學(xué)卷來看,都很重視基礎(chǔ)知識(shí),突出教材的考查功能。試題至少有一半以上來源于教材,強(qiáng)調(diào)對通性通法的考查。針對這一情況,提醒考生,在剩下的不多的復(fù)習(xí)時(shí)間里,必須注意回歸課本,圍繞課本回憶和梳理知識(shí)點(diǎn),對典型問題進(jìn)行分析、解構(gòu)、熟悉。只有透徹理解課本例題、習(xí)題所涵蓋的知識(shí)重點(diǎn)和解題方法,才能以不變應(yīng)萬變。
三、針對專題攻克板塊
復(fù)習(xí)中,應(yīng)加強(qiáng)各知識(shí)板塊的綜合。對于重點(diǎn)知識(shí)的交叉點(diǎn)和結(jié)合點(diǎn),進(jìn)行必要的針對性專題復(fù)習(xí)。例如,函數(shù)是整個(gè)中學(xué)數(shù)學(xué)中非常重要的部分,可以以它為主干,與不等式、方程、相似形等結(jié)合起來,進(jìn)行綜合復(fù)習(xí)。
四、規(guī)范訓(xùn)練提高效率
學(xué)生常常把計(jì)算錯(cuò)誤簡單地歸結(jié)為粗心,其實(shí)不然,這有可能是基礎(chǔ)不牢固,也有可能是技巧不熟練。建議考生,在復(fù)習(xí)階段要注重培養(yǎng)自己在解題中的運(yùn)算能力,每次練習(xí)做到熟練、準(zhǔn)確、簡捷、迅速。經(jīng)驗(yàn)表明,每次作業(yè)、考試后建立的錯(cuò)題本,是學(xué)生檢查和總結(jié)自身薄弱環(huán)節(jié)的有效方式。在復(fù)習(xí)階段,考生需要的就是一些行之有效的方法,幫助他們更合理有效地利用時(shí)間,集中精力,提高效率。
五、有計(jì)劃才有主動(dòng)
從一個(gè)學(xué)生的計(jì)劃上就可以體現(xiàn)出你能抓住的是西瓜還是芝麻,這是對學(xué)生條理性的檢驗(yàn)。有了一個(gè)量身定制、有的放矢的復(fù)習(xí)計(jì)劃,才真正抓住了主動(dòng)權(quán)。
六、注重雙基強(qiáng)化課本
正如前面提到的,近幾年的中考上體現(xiàn)了全面考察基礎(chǔ)知識(shí)、重點(diǎn)知識(shí),注重通性通法的特點(diǎn)。這就要求同學(xué)們必須注重“雙基”訓(xùn)練,重點(diǎn)要求以課本知識(shí)為主,對整個(gè)學(xué)期學(xué)過的知識(shí)熟記、歸納、總結(jié),并參照課后習(xí)題反復(fù)思考、加深理解,做到熟練掌握,并靈活運(yùn)用。
講完了備考要注意的六個(gè)方向,極客數(shù)學(xué)幫還為同學(xué)們整理了有關(guān)于數(shù)學(xué)知識(shí)點(diǎn)快速記憶法,一起來看看吧。
有理數(shù)的加法運(yùn)算:同號相加一邊倒;異號相加“大”減“小”,符號跟著大的跑;絕對值相等“零”正好
【注】“大”減“小”是指絕對值的大小。
合并同類項(xiàng):合并同類項(xiàng),法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣。
去、添括號法則:去括號、添括號,關(guān)鍵看符號,括號前面是正號,去、添括號不變號,括號前面是負(fù)號,去、添括號都變號。
恒等變換:兩個(gè)數(shù)字來相減,互換位置最常見,正負(fù)只看其指數(shù),奇數(shù)變號偶不變。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n
平方差公式:平方差公式有兩項(xiàng),符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。
完全平方:完全平方有三項(xiàng),首尾符號是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;首±尾括號帶平方,尾項(xiàng)符號隨中央。
因式分解:一提(公因式)二套(公式)三分組,細(xì)看幾項(xiàng)不離譜,兩項(xiàng)只用平方差,三項(xiàng)十字相乘法,陣法熟練不馬虎,四項(xiàng)仔細(xì)看清楚,若有三個(gè)平方數(shù)(項(xiàng)),就用一三來分組,否則二二去分組,五項(xiàng)、六項(xiàng)更多項(xiàng),二三、三三試分組,以上若都行不通,拆項(xiàng)、添項(xiàng)看清楚。
“代入”口決:挖去字母換上數(shù)(式),數(shù)字、字母都保留;換上分?jǐn)?shù)或負(fù)數(shù),給它帶上小括弧,原括弧內(nèi)出(現(xiàn))括弧,逐級向下變括弧(小—中—大)
單項(xiàng)式運(yùn)算:加、減、乘、除、乘(開)方,三級運(yùn)算分得清,系數(shù)進(jìn)行同級(運(yùn))算,指數(shù)運(yùn)算降級(進(jìn))行。
一元一次不等式解題的一般步驟:去分母、去括號,移項(xiàng)時(shí)候要變號,同類項(xiàng)、合并好,再把系數(shù)來除掉,兩邊除(以)負(fù)數(shù)時(shí),不等號改向別忘了。
一元一次不等式組的解集:大大取較大,小小取較小,小大,大小取中間,大小,小大無處找。
一元二次不等式、一元一次絕對值不等式的解集:大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。
分式混合運(yùn)算法則:分式四則運(yùn)算,順序乘除加減,乘除同級運(yùn)算,除法符號須變(乘);乘法進(jìn)行化簡,因式分解在先,分子分母相約,然后再行運(yùn)算;加減分母需同,分母化積關(guān)鍵;找出最簡公分母,通分不是很難;變號必須兩處,結(jié)果要求最簡。
分式方程的解法步驟:同乘最簡公分母,化成整式寫清楚,求得解后須驗(yàn)根,原(根)留、增(根)舍別含糊。
最簡根式的條件:最簡根式三條件,號內(nèi)不把分母含,冪指(數(shù))根指(數(shù))要互質(zhì),冪指比根指小一點(diǎn)。
特殊點(diǎn)坐標(biāo)特征:坐標(biāo)平面點(diǎn)(x,y),橫在前來縱在后;(+,+),(-,+),(-,-)和(+,-),四個(gè)象限分前后;X軸上y為0,x為0在Y軸。
象限角的平分線:象限角的平分線,坐標(biāo)特征有特點(diǎn),一、三橫縱都相等,二、四橫縱確相反。
平行某軸的直線:平行某軸的直線,點(diǎn)的坐標(biāo)有講究,直線平行X軸,縱坐標(biāo)相等橫不同;直線平行于Y軸,點(diǎn)的橫坐標(biāo)仍照舊。
對稱點(diǎn)坐標(biāo):對稱點(diǎn)坐標(biāo)要記牢,相反數(shù)位置莫混淆,X軸對稱y相反,Y軸對稱,x前面添負(fù)號;原點(diǎn)對稱最好記,橫縱坐標(biāo)變符號。
自變量的取值范圍:分式分母不為零,偶次根下負(fù)不行;零次冪底數(shù)不為零,整式、奇次根全能行。
函數(shù)圖像的移動(dòng)規(guī)律:若把一次函數(shù)解析式寫成y=k(x+0)+b、二次函數(shù)的解析式寫成y=a(x+h)2+k的形式,則用下面后的口訣“左右平移在括號,上下平移在末稍,左正右負(fù)須牢記,上正下負(fù)錯(cuò)不了”。
相關(guān)文章:
1.中考數(shù)學(xué)的復(fù)習(xí)方法有哪些