不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學習啦>學習方法>高中學習方法>高二學習方法>高二數(shù)學>

高二數(shù)學知識點梳理總結

時間: 楚琪0 分享

總結在一個時期、一個年度、一個階段對學習和工作生活等情況加以回顧和分析的一種書面材料,通過它可以正確認識以往學習和工作中的優(yōu)缺點,下面是小編給大家?guī)淼?a href='http://www.athomedrugdetox.com/xuexiff/gaoershuxue/' target='_blank'>高二數(shù)學知識點梳理總結 ,以供大家參考!

高二數(shù)學知識點梳理總結

等差數(shù)列

對于一個數(shù)列{an},如果任意相鄰兩項之差為一個常數(shù),那么該數(shù)列為等差數(shù)列,且稱這一定值差為公差,記為d;從第一項a1到第n項an的總和,記為Sn。

那么,通項公式為,其求法很重要,利用了“疊加原理”的思想:

將以上n-1個式子相加,便會接連消去很多相關的項,最終等式左邊余下an,而右邊則余下a1和n-1個d,如此便得到上述通項公式。

此外,數(shù)列前n項的和,其具體推導方式較簡單,可用以上類似的疊加的方法,也可以采取迭代的方法,在此,不再復述。

值得說明的是,前n項的和Sn除以n后,便得到一個以a1為首項,以d/2為公差的新數(shù)列,利用這一特點可以使很多涉及Sn的數(shù)列問題迎刃而解。

等比數(shù)列

對于一個數(shù)列{an},如果任意相鄰兩項之商(即二者的比)為一個常數(shù),那么該數(shù)列為等比數(shù)列,且稱這一定值商為公比q;從第一項a1到第n項an的總和,記為Tn。

那么,通項公式為(即a1乘以q的(n-1)次方,其推導為“連乘原理”的思想:

a2=a1_,

a3=a2_,

a4=a3_,

````````

an=an-1_,

將以上(n-1)項相乘,左右消去相應項后,左邊余下an,右邊余下a1和(n-1)個q的乘積,也即得到了所述通項公式。

此外,當q=1時該數(shù)列的前n項和Tn=a1_

當q≠1時該數(shù)列前n項的和Tn=a1_1-q^(n))/(1-q).

高二數(shù)學必修五知識點

(一)解三角形:

1、正弦定理:在中,、、分別為角、、的對邊,,則有

(為的外接圓的半徑)

2、正弦定理的變形公式:①,,;

②,,;③;

3、三角形面積公式:.

4、余弦定理:在中,有,推論:

(二)數(shù)列:

1.數(shù)列的有關概念:

(1)數(shù)列:按照一定次序排列的一列數(shù)。數(shù)列是有序的。數(shù)列是定義在自然數(shù)N_它的有限子集{1,2,3,…,n}上的函數(shù)。

(2)通項公式:數(shù)列的第n項an與n之間的函數(shù)關系用一個公式來表示,這個公式即是該數(shù)列的通項公式。如:。

(3)遞推公式:已知數(shù)列{an}的第1項(或前幾項),且任一項an與他的前一項an-1(或前幾項)可以用一個公式來表示,這個公式即是該數(shù)列的遞推公式。

如:。

2.數(shù)列的表示方法:

(1)列舉法:如1,3,5,7,9,…(2)圖象法:用(n,an)孤立點表示。

(3)解析法:用通項公式表示。(4)遞推法:用遞推公式表示。

3.數(shù)列的分類:

4.數(shù)列{an}及前n項和之間的關系:

高二數(shù)學重點知識歸納最新

正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑

余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角

圓的標準方程(_-a)2+(y-b)2=r2注:(a,b)是圓心坐標

圓的一般方程_2+y2+D_+Ey+F=0注:D2+E2-4F>0

拋物線標準方程y2=2p_y2=-2p__2=2py_2=-2py

直棱柱側面積S=c_h斜棱柱側面積S=c'_h

正棱錐側面積S=1/2c_h'正棱臺側面積S=1/2(c+c')h'

圓臺側面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi_r2

圓柱側面積S=c_h=2pi_h圓錐側面積S=1/2_c_l=pi_r_l

弧長公式l=a_ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2_l_r

錐體體積公式V=1/3_S_H圓錐體體積公式V=1/3_pi_r2h

斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側棱長

柱體體積公式V=s_h圓柱體V=p_r2h

乘法與因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b|-|a|≤a≤|a|

一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

根與系數(shù)的關系_1+_2=-b/a_1__2=c/a注:韋達定理

判別式

b2-4ac=0注:方程有兩個相等的實根

b2-4ac>0注:方程有兩個不等的實根

b2-4ac<0注:方程沒有實根,有共軛復數(shù)根

高二數(shù)學知識點梳理總結相關文章

高二數(shù)學知識點歸納

高二數(shù)學知識點及公式整理

高二數(shù)學知識的重點要點的總結

高二數(shù)學知識點總結(人教版)

高二數(shù)學知識點總結選修2

高二數(shù)學知識點總結人教版

高二數(shù)學試卷分析

高二數(shù)學知識點總結

高二年級數(shù)學知識點總結及復習資料

高二數(shù)學學考必考知識點概括

1615005