高二重要數(shù)學考試知識點
天才就是勤奮曾經(jīng)有人這樣說過。如果這話不完全正確,那至少在很大程度上是正確的。學習,就算是天才,也是需要不斷練習與記憶的。下面是小編給大家整理的一些高二數(shù)學的知識點,希望對大家有所幫助。
高二數(shù)學重點知識點總結(jié)
一、事件
1.在條件SS的必然事件.
2.在條件S下,一定不會發(fā)生的事件,叫做相對于條件S的不可能事件.
3.在條件SS的隨機事件.
二、概率和頻率
1.用概率度量隨機事件發(fā)生的可能性大小能為我們決策提供關鍵性依據(jù).
2.在相同條件S下重復n次試驗,觀察某一事件A是否出現(xiàn),稱n次試驗中事件A出現(xiàn)的次數(shù)nA
nA為事件A出現(xiàn)的頻數(shù),稱事件A出現(xiàn)的比例fn(A)=為事件A出現(xiàn)的頻率.
3.對于給定的隨機事件A,由于事件A發(fā)生的頻率fn(A)P(A),P(A).
三、事件的關系與運算
四、概率的幾個基本性質(zhì)
1.概率的取值范圍:
2.必然事件的概率P(E)=3.不可能事件的概率P(F)=
4.概率的加法公式:
如果事件A與事件B互斥,則P(AB)=P(A)+P(B).
5.對立事件的概率:
若事件A與事件B互為對立事件,則AB為必然事件.P(AB)=1,P(A)=1-P(B).
高二數(shù)學重要知識點整理
正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑
余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角
圓的標準方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標
圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
拋物線標準方程y2=2pxy2=-2p_2=2pyx2=-2py
直棱柱側(cè)面積S=c_h斜棱柱側(cè)面積S=c'_h
正棱錐側(cè)面積S=1/2c_h'正棱臺側(cè)面積S=1/2(c+c')h'
圓臺側(cè)面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi_r2
圓柱側(cè)面積S=c_h=2pi_h圓錐側(cè)面積S=1/2_c_l=pi_r_l
弧長公式l=a_ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2_l_r
錐體體積公式V=1/3_S_H圓錐體體積公式V=1/3_pi_r2h
斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側(cè)棱長
柱體體積公式V=s_h圓柱體V=p_r2h
乘法與因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根與系數(shù)的關系X1+X2=-b/aX1_X2=c/a注:韋達定理
判別式
b2-4ac=0注:方程有兩個相等的實根
b2-4ac>0注:方程有兩個不等的實根
b2-4ac<0注:方程沒有實根,有共軛復數(shù)根
高二年級數(shù)學必修二知識點總結(jié)
空間兩條直線只有三種位置關系:平行、相交、異面
按是否共面可分為兩類:
(1)共面:平行、相交
(2)異面:
異面直線的定義:不同在任何一個平面內(nèi)的兩條直線或既不平行也不相交。
異面直線判定定理:用平面內(nèi)一點與平面外一點的直線,與平面內(nèi)不經(jīng)過該點的直線是異面直線。
兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法
兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法
若從有無公共點的角度看可分為兩類:
(1)有且僅有一個公共點——相交直線;(2)沒有公共點——平行或異面
直線和平面的位置關系:
直線和平面只有三種位置關系:在平面內(nèi)、與平面相交、與平面平行
①直線在平面內(nèi)——有無數(shù)個公共點
②直線和平面相交——有且只有一個公共點
直線與平面所成的角:平面的一條斜線和它在這個平面內(nèi)的射影所成的銳角。
空間向量法(找平面的法向量)
規(guī)定:a、直線與平面垂直時,所成的角為直角,b、直線與平面平行或在平面內(nèi),所成的角為0°角
由此得直線和平面所成角的取值范圍為[0°,90°]
最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角
三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個平面的一條斜線的射影垂直,那么它也與這條斜線垂直
直線和平面垂直
直線和平面垂直的定義:如果一條直線a和一個平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。
直線與平面垂直的判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個平面。
直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。③直線和平面平行——沒有公共點
直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。
直線和平面平行的判定定理:如果平面外一條直線和這個平面內(nèi)的一條直線平行,那么這條直線和這個平面平行。
直線和平面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。
高二數(shù)學知識點總結(jié)歸納
第一章:集合和函數(shù)的基本概念,錯誤基本都集中在空集這一概念上,而每次考試基本都會在選填題上涉及這一概念,一個不小心就是五分沒了。次一級的知識點就是集合的韋恩圖,會畫圖,集合的“并、補、交、非”也就解決了,還有函數(shù)的定義域和函數(shù)的單調(diào)性、增減性的概念,這些都是函數(shù)的基礎而且不難理解。在第一輪復習中一定要反復去記這些概念,的方法是寫在筆記本上,每天至少看上一遍。
第二章:基本初等函數(shù):指數(shù)、對數(shù)、冪函數(shù)三大函數(shù)的運算性質(zhì)及圖像。函數(shù)的幾大要素和相關考點基本都在函數(shù)圖像上有所體現(xiàn),單調(diào)性、增減性、極值、零點等等。關于這三大函數(shù)的運算公式,多記多用,多做一點練習基本就沒多大問題。函數(shù)圖像是這一章的重難點,而且圖像問題是不能靠記憶的,必須要理解,要會熟練的畫出函數(shù)圖像,定義域、值域、零點等等。對于冪函數(shù)還要搞清楚當指數(shù)冪大于一和小于一時圖像的不同及函數(shù)值的大小關系,這也是??汲ee點。另外指數(shù)函數(shù)和對數(shù)函數(shù)的對立關系及其相互之間要怎樣轉(zhuǎn)化問題也要了解清楚。
第三章:函數(shù)的應用。主要就是函數(shù)與方程的結(jié)合。其實就是的實根,即函數(shù)的零點,也就是函數(shù)圖像與X軸的交點。這三者之間的轉(zhuǎn)化關系是這一章的重點,要學會在這三者之間的靈活轉(zhuǎn)化,以求能最簡單的解決問題。關于證明零點的方法,直接計算加得必有零點,連續(xù)函數(shù)在x軸上方下方有定義則有零點等等,這是這一章的難點,這幾種證明方法都要記得,多練習強化。這二次函數(shù)的零點的Δ判別法,這個倒不算難。
高二重要數(shù)學考試知識點相關文章: