高二數學導數函數相關知識點
增加內驅力,從思想上重視高二,從心理上強化高二,使戰(zhàn)勝高考的這個關鍵環(huán)節(jié)過硬起來,是“志存高遠”這四個字在高二年級的全部解釋。以下是小編給大家整理的高二數學導數函數相關知識點,希望能助你一臂之力!
高二數學導數函數相關知識點1
1、導數的定義:在點處的導數記作.
2.導數的幾何物理意義:曲線在點處切線的斜率
①k=f/(_0)表示過曲線y=f(_)上P(_0,f(_0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。
3.常見函數的導數公式:
4.導數的四則運算法則:
5.導數的應用:
(1)利用導數判斷函數的單調性:設函數在某個區(qū)間內可導,如果,那么為增函數;如果,那么為減函數;
注意:如果已知為減函數求字母取值范圍,那么不等式恒成立。
(2)求極值的步驟:
①求導數;
②求方程的根;
③列表:檢驗在方程根的左右的符號,如果左正右負,那么函數在這個根處取得極大值;如果左負右正,那么函數在這個根處取得極小值;
(3)求可導函數值與最小值的步驟:
ⅰ求的根;ⅱ把根與區(qū)間端點函數值比較,的為值,最小的是最小值。
高二數學導數函數相關知識點2
一、求導數的方法
(1)基本求導公式
(2)導數的四則運算
(3)復合函數的導數
設在點_處可導,y=在點處可導,則復合函數在點_處可導,且即
二、關于極限
.1.數列的極限:
粗略地說,就是當數列的項n無限增大時,數列的項無限趨向于A,這就是數列極限的描述性定義。記作:=A。如:
2函數的極限:
當自變量_無限趨近于常數時,如果函數無限趨近于一個常數,就說當_趨近于時,函數的極限是,記作
三、導數的概念
1、在處的導數.
2、在的導數.
3.函數在點處的導數的幾何意義:
函數在點處的導數是曲線在處的切線的斜率,
即k=,相應的切線方程是
注:函數的導函數在時的函數值,就是在處的導數。
例、若=2,則=()A-1B-2C1D
四、導數的綜合運用
(一)曲線的切線
函數y=f(_)在點處的導數,就是曲線y=(_)在點處的切線的斜率.由此,可以利用導數求曲線的切線方程.具體求法分兩步:
(1)求出函數y=f(_)在點處的導數,即曲線y=f(_)在點處的切線的斜率k=;
(2)在已知切點坐標和切線斜率的條件下,求得切線方程為_。
高中數學函數與導數知識點總結分享:
函數與導數
第一、求函數定義域題忽視細節(jié)函數的定義域是使函數有意義的自變量的取值范圍,考生想要在考場上準確求出定義域,就要根據函數解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數的定義域。在求一般函數定義域時,要注意以下幾點:分母不為0;偶次被開放式非負;真數大于0以及0的0次冪無意義。函數的定義域是非空的數集,在解答函數定義域類的題時千萬別忘了這一點。復合函數要注意外層函數的定義域由內層函數的值域決定。
第二、帶絕對值的函數單調性判斷錯誤帶絕對值的函數實質上就是分段函數,判斷分段函數的單調性有兩種方法:第一,在各個段上根據函數的解析式所表示的函數的單調性求出單調區(qū)間,然后對各個段上的單調區(qū)間進行整合;第二,畫出這個分段函數的圖象,結合函數圖象、性質能夠進行直觀的判斷。函數題離不開函數圖象,而函數圖象反應了函數的所有性質,考生在解答函數題時,要第一時間在腦海中畫出函數圖象,從圖象上分析問題,解決問題。對于函數不同的單調遞增(減)區(qū)間,千萬記住,不要使用并集,指明這幾個區(qū)間是該函數的單調遞增(減)區(qū)間即可。
第三、求函數奇偶性的常見錯誤求函數奇偶性類的題最常見的錯誤有求錯函數定義域或忽視函數定義域,對函數具有奇偶性的前提條件不清,對分段函數奇偶性判斷方法不當等等。判斷函數的奇偶性,首先要考慮函數的定義域,一個函數具備奇偶性的必要條件是這個函數的定義域區(qū)間關于原點對稱,如果不具備這個條件,函數一定是非奇非偶的函數。在定義域區(qū)間關于原點對稱的前提下,再根據奇偶函數的定義進行判斷。在用定義進行判斷時,要注意自變量在定義域區(qū)間內的任意性。
第四、抽象函數推理不嚴謹很多抽象函數問題都是以抽象出某一類函數的共同“特征”而設計的,在解答此類問題時,考生可以通過類比這類函數中一些具體函數的性質去解決抽象函數。多用特殊賦值法,通過特殊賦可以找到函數的不變性質,這往往是問題的突破口。抽象函數性質的證明屬于代數推理,和幾何推理證明一樣,考生在作答時要注意推理的嚴謹性。每一步都要有充分的條件,別漏掉條件,更不能臆造條件,推理過程層次分明,還要注意書寫規(guī)范。
第五、函數零點定理使用不當若函數y=f(_)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,且有f(a)f(b)<>
第六、混淆兩類切線曲線上一點處的切線是指以該點為切點的曲線的切線,這樣的切線只有一條;曲線的過一個點的切線是指過這個點的曲線的所有切線,這個點如果在曲線上當然包括曲線在該點處的切線,曲線的過一個點的切線可能不止一條。因此,考生在求解曲線的切線問題時,首先要區(qū)分是什么類型的切線。
第七、混淆導數與單調性的關系一個函數在某個區(qū)間上是增函數的這類題型,如果考生認為函數的導函數在此區(qū)間上恒大于0,很容易就會出錯。解答函數的單調性與其導函數的關系時一定要注意,一個函數的導函數在某個區(qū)間上單調遞增(減)的充要條件是這個函數的導函數在此區(qū)間上恒大(小)于等于0,且導函數在此區(qū)間的任意子區(qū)間上都不恒為零。
第八、導數與極值關系不清考生在使用導數求函數極值類問題時,容易出現的錯誤就是求出使導函數等于0的點,卻沒有對這些點左右兩側導函數的符號進行判斷,誤以為使導函數等于0的點就是函數的極值點,往往就會出錯,出錯原因就是考生對導數與極值關系沒搞清楚??蓪Ш瘮翟谝粋€點處的導函數值為零只是這個函數在此點處取到極值的必要條件,小編在此提醒廣大考生,在使用導數求函數極值時,一定要對極值點進行仔細檢查。
高二數學導數函數相關知識點3
反正弦函數的導數:正弦函數y=sin_在[-π/2,π/2]上的反函數,叫做反正弦函數。記作arcsin_,表示一個正弦值為_的角,該角的范圍在[-π/2,π/2]區(qū)間內。定義域[-1,1],值域[-π/2,π/2]。
反函數求導方法
若F(_),G(_)互為反函數,
則:F'(_)_G'(_)=1
E.G.:y=arcsin__=siny
y'__'=1(arcsin_)'_(siny)'=1
y'=1/(siny)'=1/(cosy)=1/根號(1-sin^2y)=1/根號(1-_^2)
其余依此類推
高二數學導數函數相關知識點相關文章: