高二數學鞏固累積知識點總結
高二時期的學習目標主要體現在班級或年級里你應該達到或者超過什么水平,以及你在高中畢業(yè)時將要達到什么水平,學到什么知識和技能,考上什么類型的大學等。以下是小編給大家整理的高二數學鞏固累積知識點總結,希望大家能夠喜歡!
高二數學鞏固累積知識點總結1
直線、平面、簡單幾何體:
1、學會三視圖的分析:
2、斜二測畫法應注意的地方:
(1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應軸o'x'、o'y'、使∠x'o'y'=45°(或135°);
(2)平行于x軸的線段長不變,平行于y軸的線段長減半.
(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.
3、表(側)面積與體積公式:
⑴柱體:①表面積:S=S側+2S底;②側面積:S側=;③體積:V=S底h
⑵錐體:①表面積:S=S側+S底;②側面積:S側=;③體積:V=S底h:
⑶臺體①表面積:S=S側+S上底S下底②側面積:S側=
⑷球體:①表面積:S=;②體積:V=
4、位置關系的證明(主要方法):注意立體幾何證明的書寫
(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。
(2)平面與平面平行:①線面平行面面平行。
(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內的兩條相交直線
5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)
⑴異面直線所成角的求法:平移法:平移直線,構造三角形;
⑵直線與平面所成的角:直線與射影所成的角
高二數學鞏固累積知識點總結2
直線的傾斜角:
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
直線的斜率:
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
②過兩點的直線的斜率公式。
注意:
(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關;
(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。
直線方程:
1.點斜式:y-y0=k(x-x0)
(x0,y0)是直線所通過的已知點的坐標,k是直線的已知斜率。x是自變量,直線上任意一點的橫坐標;y是因變量,直線上任意一點的縱坐標。
2.斜截式:y=kx+b
直線的斜截式方程:y=kx+b,其中k是直線的斜率,b是直線在y軸上的截距。該方程叫做直線的斜截式方程,簡稱斜截式。此斜截式類似于一次函數的表達式。
3.兩點式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1)
如果x1=x2,y1=y2,那么兩點就重合了,相當于只有一個已知點了,這樣不能確定一條直線。
如果x1=x2,y1y2,那么此直線就是垂直于X軸的一條直線,其方程為x=x1,不能表示成上面的一般式。
如果x1x2,但y1=y2,那么此直線就是垂直于Y軸的一條直線,其方程為y=y1,也不能表示成上面的一般式。
4.截距式x/a+y/b=1
對x的截距就是y=0時,x的值,對y的截距就是x=0時,y的值。x截距為a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推導y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x=-b/k所以截距a=-b/k,b=b帶入得x/a+y/b=x/(-b/k)+y/b=-kx/b+y/b=(b-y)/b+y/b=b/b=1。
5.一般式;Ax+By+C=0
將ax+by+c=0變換可得y=-x/b-c/b(b不為零),其中-x/b=k(斜率),c/b=‘b’(截距)。ax+by+c=0在解析幾何中更常用,用方程處理起來比較方便。
高二數學鞏固累積知識點總結3
1.定義法:
判斷B是A的條件,實際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關系畫出箭頭示意圖,再利用定義判斷即可。
2.轉換法:
當所給命題的充要條件不易判斷時,可對命題進行等價裝換,例如改用其逆否命題進行判斷。
3.集合法
在命題的條件和結論間的關系判斷有困難時,可從集合的角度考慮,記條件p、q對應的集合分別為A、B,則:
若A?B,則p是q的充分條件。
若A?B,則p是q的必要條件。
若A=B,則p是q的充要條件。
若A?B,且B?A,則p是q的既不充分也不必要條件。
高二數學鞏固累積知識點總結相關文章: