不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學習啦>學習方法>高中學習方法>高二學習方法>高二數學>

高二數學關鍵知識點

時間: 贊銳0 分享

學習并領悟堅強,做一個對生活充滿自信的人,忘記過去把握此刻,人生依舊要堅強地走下去。卑微的小草,正正因它學習并領悟了堅強,最后成為了原野。所以學習對我們很重要,下面是小編給大家?guī)淼?a href='http://www.athomedrugdetox.com/xuexiff/gaoershuxue/' target='_blank'>高二數學關鍵知識點,希望能幫助到你!

高二數學關鍵知識點

1、圓的定義

平面內到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑。

2、圓的方程

(1)標準方程,圓心,半徑為r;

(2)一般方程

當時,方程表示圓,此時圓心為,半徑為

當時,表示一個點;當時,方程不表示任何圖形。

(3)求圓方程的方法:

一般都采用待定系數法:先設后求。確定一個圓需要三個獨立條件,若利用圓的標準方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置。

3、直線與圓的位置關系

直線與圓的位置關系有相離,相切,相交三種情況:

(1)設直線,圓,圓心到l的距離為,則有

(2)過圓外一點的切線:

①k不存在,驗證是否成立

②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

4、圓與圓的位置關系

通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

設圓

兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

當時兩圓外離,此時有公切線四條;

當時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;

當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

當時,兩圓內切,連心線經過切點,只有一條公切線;

當時,兩圓內含;當時,為同心圓。

注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線

圓的輔助線一般為連圓心與切線或者連圓心與弦中點

高二數學關鍵知識點歸納

1、向量的加法

向量的加法滿足平行四邊形法則和三角形法則。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的運算律:

交換律:a+b=b+a;

結合律:(a+b)+c=a+(b+c)。

2、向量的減法

如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0.0的反向量為0

AB-AC=CB.即“共同起點,指向被減”

a=(x,y)b=(x',y')則a-b=(x-x',y-y').

4、數乘向量

實數λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣·∣a∣。

當λ>0時,λa與a同方向;

當λ<0時,λa與a反方向;

當λ=0時,λa=0,方向任意。

當a=0時,對于任意實數λ,都有λa=0。

注:按定義知,如果λa=0,那么λ=0或a=0。

實數λ叫做向量a的系數,乘數向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。

當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;

當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。

數與向量的乘法滿足下面的運算律

結合律:(λa)·b=λ(a·b)=(a·λb)。

向量對于數的分配律(第一分配律):(λ+μ)a=λa+μa.

數對于向量的分配律(第二分配律):λ(a+b)=λa+λb.

數乘向量的消去律:①如果實數λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。

3、向量的的數量積

定義:兩個非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。

定義:兩個向量的數量積(內積、點積)是一個數量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣。

向量的數量積的坐標表示:a·b=x·x'+y·y'。

向量的數量積的運算率

a·b=b·a(交換率);

(a+b)·c=a·c+b·c(分配率);

向量的數量積的性質

a·a=|a|的平方。

a⊥b〈=〉a·b=0。

|a·b|≤|a|·|b|。

高二數學關鍵知識點匯總

異面直線定義:不同在任何一個平面內的兩條直線

異面直線性質:既不平行,又不相交.

異面直線判定:過平面外一點與平面內一點的直線與平面內不過該店的直線是異面直線

異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角.兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直.

求異面直線所成角步驟:

A、利用定義構造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上.B、證明作出的角即為所求角C、利用三角形來求角

(7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補.

(8)空間直線與平面之間的位置關系

直線在平面內——有無數個公共點.

三種位置關系的符號表示:aαa∩α=Aaα

(9)平面與平面之間的位置關系:平行——沒有公共點;αβ

相交——有一條公共直線.α∩β=b

2、空間中的平行問題

(1)直線與平面平行的判定及其性質

線面平行的判定定理:平面外一條直線與此平面內一條直線平行,則該直線與此平面平行.

線線平行線面平行

線面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,

那么這條直線和交線平行.線面平行線線平行

(2)平面與平面平行的判定及其性質

兩個平面平行的判定定理

(1)如果一個平面內的兩條相交直線都平行于另一個平面,那么這兩個平面平行

(線面平行→面面平行),

(2)如果在兩個平面內,各有兩組相交直線對應平行,那么這兩個平面平行.

(線線平行→面面平行),

(3)垂直于同一條直線的兩個平面平行,

兩個平面平行的性質定理

(1)如果兩個平面平行,那么某一個平面內的直線與另一個平面平行.(面面平行→線面平行)

(2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行.(面面平行→線線平行)

3、空間中的垂直問題

(1)線線、面面、線面垂直的定義

兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直.

線面垂直:如果一條直線和一個平面內的任何一條直線垂直,就說這條直線和這個平面垂直.

平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直.

(2)垂直關系的判定和性質定理

線面垂直判定定理和性質定理

判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直這個平面.

性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行.

面面垂直的判定定理和性質定理

判定定理:如果一個平面經過另一個平面的一條垂線,那么這兩個平面互相垂直.

性質定理:如果兩個平面互相垂直,那么在一個平面內垂直于他們的交線的直線垂直于另一個平面.

4、空間角問題

(1)直線與直線所成的角

兩平行直線所成的角:規(guī)定為.

兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角.

兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角.

(2)直線和平面所成的角

平面的平行線與平面所成的角:規(guī)定為.平面的垂線與平面所成的角:規(guī)定為.

平面的斜線與平面所成的角:平面的一條斜線和它在平面內的射影所成的銳角,叫做這條直線和這個平面所成的角.

求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”.

在“作角”時依定義關鍵作射影,由射影定義知關鍵在于斜線上一點到面的垂線,

在解題時,注意挖掘題設中主要信息:

(1)斜線上一點到面的垂線;

(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質易得垂線.

(3)二面角和二面角的平面角

二面角的定義:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面.

二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角.

直二面角:平面角是直角的二面角叫直二面角.

兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角

求二面角的方法

定義法:在棱上選擇有關點,過這個點分別在兩個面內作垂直于棱的射線得到平面角

垂面法:已知二面角內一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角

高二數學關鍵知識點相關文章

高二數學知識點總結

高二數學必背知識點總結

高二數學知識點歸納總結

高二數學上下學期知識點復習提綱

高二數學知識點總結歸納

高二數學知識點最新歸納

高二數學知識點全總結

高中高二數學重要知識點口訣

高二數學復習必背知識點歸納

高二數學關鍵知識點

學習并領悟堅強,做一個對生活充滿自信的人,忘記過去把握此刻,人生依舊要堅強地走下去。卑微的小草,正正因它學習并領悟了堅強,最后成為了原野。所以學習對我們很重要,下面是小編給大家?guī)淼母叨祵W關鍵知識點
推薦度:
點擊下載文檔文檔為doc格式
1069486