高二數(shù)學(xué)不等式知識點
勤奮是一種努力自強的精神,勤奮是一種勇往直前的精神。一勤天下無難事,勤奮,更是變理想為現(xiàn)實的行動,是由量變到質(zhì)的過程,是走向成功的階梯,是成為天才必不可少的條件。以下是小編給大家整理的高二數(shù)學(xué)不等式知識點,希望能幫助大家!
高二數(shù)學(xué)不等式知識點1
1.不等式的定義:a-b>;0a>;b, a-b=0a=b, a-b<;0a
① 其實質(zhì)是運用實數(shù)運算來定義兩個實數(shù)的大小關(guān)系。它是本章的基礎(chǔ),也是證明不等式與解不等式的主要依據(jù)。
②可以結(jié)合函數(shù)單調(diào)性的證明這個熟悉的知識背景,來認識作差法比大小的理論基礎(chǔ)是不等式的性質(zhì)。
作差后,為判斷差的符號,需要分解因式,以便使用實數(shù)運算的符號法則。
2.不等式的性質(zhì):
① 不等式的性質(zhì)可分為不等式基本性質(zhì)和不等式運算性質(zhì)兩部分。
不等式基本性質(zhì)有:
(1) a>;bb
(2) a>;b, b>;ca>;c (傳遞性)
(3) a>;ba+c>;b+c (c∈R)
(4) c>;0時,a>;bac>;bc
c<;0時,a>;bac
運算性質(zhì)有:
(1) a>;b, c>;da+c>;b+d.
(2) a>;b>;0, c>;d>;0ac>;bd.
(3) a>;b>;0an>;bn (n∈N, n>;1)。
(4) a>;b>;0>;(n∈N, n>;1)。
應(yīng)注意,上述性質(zhì)中,條件與結(jié)論的邏輯關(guān)系有兩種:“”和“”即推出關(guān)系和等價關(guān)系。一般地,證明不等式就是從條件出發(fā)施行一系列的推出變換。解不等式就是施行一系列的等價變換。因此,要正確理解和應(yīng)用不等式性質(zhì)。
② 關(guān)于不等式的性質(zhì)的考察,主要有以下三類問題:
(1)根據(jù)給定的不等式條件,利用不等式的性質(zhì),判斷不等式能否成立。
(2)利用不等式的性質(zhì)及實數(shù)的性質(zhì),函數(shù)性質(zhì),判斷實數(shù)值的大小。
(3)利用不等式的性質(zhì),判斷不等式變換中條件與結(jié)論間的充分或必要關(guān)系。
高二數(shù)學(xué)不等式知識點2
證明不等式的方法靈活多樣,但比較法、綜合法、分析法仍是證明不等式的最基本方法。要依據(jù)題設(shè)、題斷的結(jié)構(gòu)特點、內(nèi)在聯(lián)系,選擇適當?shù)淖C明方法,要熟悉各種證法中的推理思維,并掌握相應(yīng)的步驟,技巧和語言特點。比較法的一般步驟是:作差(商)→變形→判斷符號(值)。
不等式相關(guān)公式
a>b,b>c=>a>c;
a>b=>a+c>b+c;
a>b,c>0=>ac>bc;
a>b,c<0=>ac
;a>b>0,c>d>0=>ac>bd;
a>b,ab>0=>1/a<1/b
;a>b>0=>a^n>b^n;
基本不等式:(根號ab)≤(a+b)/2
那麼可以變?yōu)閍^2-2ab+b^2≥0
a^2+b^2≥2ab
有兩條哦!
一個是||a|-|b||≤|a-b|≤|a|+|b|
另一個是||a|-|b||≤|a+b|≤|a|+|b|
證明可利用向量,把a、b看作向量,利用三角形兩邊之差小于第三邊,
兩邊之和大于第三邊。
高二數(shù)學(xué)不等式知識點3
解不等式的途徑,利用函數(shù)的性質(zhì)。對指無理不等式,化為有理不等式。
高次向著低次代,步步轉(zhuǎn)化要等價。數(shù)形之間互轉(zhuǎn)化,幫助解答作用大。
證不等式的方法,實數(shù)性質(zhì)威力大。求差與0比大小,作商和1爭高下。
直接困難分析好,思路清晰綜合法。非負常用基本式,正面難則反證法。
還有重要不等式,以及數(shù)學(xué)歸納法。圖形函數(shù)來幫助,畫圖建模構(gòu)造法。
高二數(shù)學(xué)不等式知識點相關(guān)文章:
★ 高二數(shù)學(xué)必修5第三章不等式知識點總結(jié)
★ 高二數(shù)學(xué)必修五不等式知識點總結(jié)
★ 高二數(shù)學(xué)必修5不等式知識點總結(jié)