高二數(shù)學考試知識點
要成功,興趣很重要,理想也很重要。每個人都有自己的興趣,你可能不愿學習某一門課程,那是因為你對它還沒有產(chǎn)生興趣,所以學習就像是在培養(yǎng)興趣一樣,下面是小編給大家?guī)淼?a href='http://www.athomedrugdetox.com/xuexiff/gaoershuxue/' target='_blank'>高二數(shù)學考試知識點,希望能幫助到你!
高二數(shù)學考試知識點1
1.計數(shù)原理知識點
①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分類)
2.排列(有序)與組合(無序)
Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!
Cnm=n!/(n-m)!m!
Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!
3.排列組合混合題的解題原則:先選后排,先分再排
排列組合題的主要解題方法:優(yōu)先法:以元素為主,應(yīng)先滿足特殊元素的要求,再考慮其他元素.以位置為主考慮,即先滿足特殊位置的要求,再考慮其他位置.
捆綁法(集團元素法,把某些必須在一起的元素視為一個整體考慮)
插空法(解決相間問題)間接法和去雜法等等
在求解排列與組合應(yīng)用問題時,應(yīng)注意:
(1)把具體問題轉(zhuǎn)化或歸結(jié)為排列或組合問題;
(2)通過分析確定運用分類計數(shù)原理還是分步計數(shù)原理;
(3)分析題目條件,避免“選取”時重復和遺漏;
(4)列出式子計算和作答.
經(jīng)常運用的數(shù)學思想是:
①分類討論思想;②轉(zhuǎn)化思想;③對稱思想.
4.二項式定理知識點:
①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn
特別地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn
②主要性質(zhì)和主要結(jié)論:對稱性Cnm=Cnn-m
二項式系數(shù)在中間。(要注意n為奇數(shù)還是偶數(shù),答案是中間一項還是中間兩項)
所有二項式系數(shù)的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n
奇數(shù)項二項式系數(shù)的和=偶數(shù)項而是系數(shù)的和
Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1
③通項為第r+1項:Tr+1=Cnran-rbr作用:處理與指定項、特定項、常數(shù)項、有理項等有關(guān)問題。
5.二項式定理的應(yīng)用:解決有關(guān)近似計算、整除問題,運用二項展開式定理并且結(jié)合放縮法證明與指數(shù)有關(guān)的不等式。
6.注意二項式系數(shù)與項的系數(shù)(字母項的系數(shù),指定項的系數(shù)等,指運算結(jié)果的系數(shù))的區(qū)別,在求某幾項的系數(shù)的和時注意賦值法的應(yīng)用。
高二數(shù)學考試知識點2
一、直線與圓:
1、直線的傾斜角的范圍是
在平面直角坐標系中,對于一條與軸相交的直線,如果把軸繞著交點按逆時針方向轉(zhuǎn)到和直線重合時所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。當直線與軸重合或平行時,規(guī)定傾斜角為0;
2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.
過兩點(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導的方法。
3、直線方程:⑴點斜式:直線過點斜率為,則直線方程為,
⑵斜截式:直線在軸上的截距為和斜率,則直線方程為
4、直線與直線的位置關(guān)系:
(1)平行A1/A2=B1/B2注意檢驗(2)垂直A1A2+B1B2=0
5、點到直線的距離公式;
兩條平行線與的距離是
6、圓的標準方程:.⑵圓的一般方程:
注意能將標準方程化為一般方程
7、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.
8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長問題.①相離②相切③相交
9、解決直線與圓的關(guān)系問題時,要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長、弦心距構(gòu)成直角三角形)直線與圓相交所得弦長
二、圓錐曲線方程:
1、橢圓:①方程(a>b>0)注意還有一個;②定義:|PF1|+|PF2|=2a>2c;③e=④長軸長為2a,短軸長為2b,焦距為2c;a2=b2+c2;
2、雙曲線:①方程(a,b>0)注意還有一個;②定義:||PF1|-|PF2||=2a<2c;③e=;④實軸長為2a,虛軸長為2b,焦距為2c;漸進線或c2=a2+b2
3、拋物線:①方程y2=2px注意還有三個,能區(qū)別開口方向;②定義:|PF|=d焦點F(,0),準線x=-;③焦半徑;焦點弦=x1+x2+p;
4、直線被圓錐曲線截得的弦長公式:
三、直線、平面、簡單幾何體:
1、學會三視圖的分析:
2、斜二測畫法應(yīng)注意的地方:
(1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應(yīng)軸o'x'、o'y'、使∠x'o'y'=45°(或135°);
(2)平行于x軸的線段長不變,平行于y軸的線段長減半.
(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.
3、表(側(cè))面積與體積公式:
⑴柱體:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=;③體積:V=S底h
⑵錐體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=;③體積:V=S底h:
⑶臺體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=
⑷球體:①表面積:S=;②體積:V=
4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書寫
(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。
(2)平面與平面平行:①線面平行面面平行。
(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線
5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)
⑴異面直線所成角的求法:平移法:平移直線,構(gòu)造三角形;
⑵直線與平面所成的角:直線與射影所成的角
高二數(shù)學考試知識點3
導數(shù)是微積分中的重要基礎(chǔ)概念。當函數(shù)y=f(x)的自變量x在一點x0上產(chǎn)生一個增量Δx時,函數(shù)輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時的極限a如果存在,a即為在x0處的導數(shù),記作f'(x0)或df(x0)/dx。
導數(shù)是函數(shù)的局部性質(zhì)。一個函數(shù)在某一點的導數(shù)描述了這個函數(shù)在這一點附近的變化率。如果函數(shù)的自變量和取值都是實數(shù)的話,函數(shù)在某一點的導數(shù)就是該函數(shù)所代表的曲線在這一點上的切線斜率。導數(shù)的本質(zhì)是通過極限的概念對函數(shù)進行局部的線性逼近。例如在運動學中,物體的位移對于時間的導數(shù)就是物體的瞬時速度。
不是所有的函數(shù)都有導數(shù),一個函數(shù)也不一定在所有的點上都有導數(shù)。若某函數(shù)在某一點導數(shù)存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函數(shù)一定連續(xù);不連續(xù)的函數(shù)一定不可導。
對于可導的函數(shù)f(x),x?f'(x)也是一個函數(shù),稱作f(x)的導函數(shù)。尋找已知的函數(shù)在某點的導數(shù)或其導函數(shù)的過程稱為求導。實質(zhì)上,求導就是一個求極限的過程,導數(shù)的四則運算法則也來源于極限的四則運算法則。反之,已知導函數(shù)也可以倒過來求原來的函數(shù),即不定積分。微積分基本定理說明了求原函數(shù)與積分是等價的。求導和積分是一對互逆的操作,它們都是微積分學中最為基礎(chǔ)的概念。
高二數(shù)學考試知識點相關(guān)文章: