不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 初中學(xué)習(xí)方法 > 初一學(xué)習(xí)方法 > 七年級數(shù)學(xué) > 數(shù)學(xué)七年級下冊冀教版電子課本

數(shù)學(xué)七年級下冊冀教版電子課本

時間: 舒淇4599 分享

關(guān)于數(shù)學(xué)七年級下冊冀教版電子課本

冀教版在全國是最難的,知識面較深,題目難且偏,重視讓學(xué)生經(jīng)歷觀察、操作、推理、想象的過程。下面小編為大家?guī)頂?shù)學(xué)七年級下冊冀教版電子課本,希望對您有所幫助!

數(shù)學(xué)七年級下冊冀教版電子課本

數(shù)學(xué)七年級下冊冀教版電子課本

數(shù)學(xué)七年級下冊冀教版電子課本



查看完整版可微信搜索公眾號【5068教學(xué)資料】,關(guān)注后對話框回復(fù)【7】獲取七年級語文、年級數(shù)學(xué)、年級英語電子課本資源。

冀教版人教版區(qū)別

1、針對地區(qū)不同:冀教版是針對河北省的地方教材系列,由河北教育出版社出版,教版是針對全國范圍的通用教材系列,由人民教育出版社出版。

2、使用對象:冀教版的教材內(nèi)容和教學(xué)資源更加貼近河北地區(qū)的實(shí)際情況和課程標(biāo)準(zhǔn),考慮到當(dāng)?shù)氐奶攸c(diǎn)和需求,人教版覆蓋全國各地的課程標(biāo)準(zhǔn)和教學(xué)要求,適用于廣大學(xué)校和學(xué)生群體。

冀教版和北師大版一樣嗎

第一是出版社不同。冀教版是河北少年兒童出版社,北師版是北京師范大學(xué)出版社。

第二是教學(xué)順序、風(fēng)格不同。冀教版教材注重層層教育方式,由簡單到提升,突出數(shù)學(xué)與現(xiàn)實(shí)的聯(lián)系突出知識之間的內(nèi)在聯(lián)系突出知識學(xué)習(xí)和形成數(shù)學(xué)觀念,發(fā)展數(shù)學(xué)思考之間的聯(lián)系。北師大版教材注重細(xì)節(jié)教育,注重創(chuàng)設(shè)情境、注重?cái)?shù)行結(jié)合重聯(lián)系實(shí)際應(yīng)用、重創(chuàng)新發(fā)現(xiàn)、重實(shí)際操作、重學(xué)習(xí)方式和教學(xué)方式的改革。但是通過對比,我個人覺得還是冀教版設(shè)計(jì)生動有趣,內(nèi)容通俗簡單且易掌握。北師版中規(guī)中矩。

七年級下冊數(shù)學(xué)期末復(fù)習(xí)

第一章 整式的運(yùn)算

一、整式

1、單項(xiàng)式:表示數(shù)與字母的積的代數(shù)式。另外規(guī)定單獨(dú)的一個數(shù)或字母也是單項(xiàng)式。

單項(xiàng)式中的數(shù)字因數(shù)叫做單項(xiàng)式的系數(shù)。注意系數(shù)包括前面的符號,系數(shù)是1時通常省略, 是系數(shù), 的系數(shù)是

單項(xiàng)式的次數(shù)是指所有字母的指數(shù)的和。

2、多項(xiàng)式:幾個單項(xiàng)式的和叫做多項(xiàng)式。 (幾次幾項(xiàng)式)

每一個單項(xiàng)式叫做多項(xiàng)式的項(xiàng),注意項(xiàng)包括前面的符號。

多項(xiàng)式的次數(shù):多項(xiàng)式中次數(shù)的項(xiàng)的次數(shù)。項(xiàng)的次數(shù)是幾就叫做幾次項(xiàng),其中不含字母的項(xiàng)叫做常數(shù)項(xiàng)。

3、整式;單項(xiàng)式與多項(xiàng)式統(tǒng)稱為整式。(最明顯的特征:分母中不含字母)

二、整式的加減:①先去括號; (注意括號前有數(shù)字因數(shù))

②再合并同類項(xiàng)。 (系數(shù)相加,字母與字母指數(shù)不變)

三、冪的運(yùn)算性質(zhì)

1、同底數(shù)冪相乘:底數(shù)不變,指數(shù)相加。

2、冪的乘方:底數(shù)不變,指數(shù)相乘。

3、積的乘方:把積中的每一個因式各自乘方,再把所得的冪相乘。

4、零指數(shù)冪:任何一個不等于0的數(shù)的0次冪等于1。 ( ) 注意00沒有意義。

5、負(fù)整數(shù)指數(shù)冪: ( 正整數(shù), )

6、同底數(shù)冪相除:底數(shù)不變,指數(shù)相減。 ( )

注意:以上公式的正反兩方面的應(yīng)用。

常見的錯誤: , , , ,

四、單項(xiàng)式乘以單項(xiàng)式:系數(shù)相乘,相同的字母相乘,只在一個因式中出現(xiàn)的字母則連同它的指數(shù)作為積的一個因式。

五、單項(xiàng)式乘以多項(xiàng)式:運(yùn)用乘法的分配率,把這個單項(xiàng)式乘以多項(xiàng)式的每一項(xiàng)。

六、多項(xiàng)式乘以多項(xiàng)式:連同各項(xiàng)的符號把其中一個多項(xiàng)式的各項(xiàng)乘以另一個多項(xiàng)式的每一項(xiàng)。

七、平方差公式

兩數(shù)的和乘以這兩數(shù)的差,等于這兩數(shù)的平方差。

即:一項(xiàng)符號相同,另一項(xiàng)符號相反,等于符號相同的平方減去符號相反的平方。

八、完全平方公式

兩數(shù)的和(或差)的平方,等于這兩數(shù)的平方和再加上(或減去)兩數(shù)積的2倍。

常見錯誤:

九、單項(xiàng)除以單項(xiàng)式:把單項(xiàng)式的系數(shù)相除,相同的字母相除,只在被除式中出現(xiàn)的字母則連同它的指數(shù)作為商的一個因式。

十、多項(xiàng)式除以單項(xiàng)式:連同各項(xiàng)的符號,把多項(xiàng)式的各項(xiàng)都除以單項(xiàng)式。

第二章 平行線與相交線

一、互余、互補(bǔ)、對頂角

1、相加等于90°的兩個角稱這兩個角互余。 性質(zhì):同角(或等角)的余角相等。

2、相加等于180°的兩個角稱這兩個角互補(bǔ)。 性質(zhì):同角(或等角)的補(bǔ)角相等。

3、兩條直線相交,有公共頂點(diǎn)但沒有公共邊的兩個角叫做對頂角;或者一個角的反相延長線與這個角是對頂角。 對頂角的性質(zhì):對頂角相等。

4、兩條直線相交,有公共頂點(diǎn)且有一條公共邊的兩個角互為鄰補(bǔ)角。 (相鄰且互補(bǔ))

二、三線八角: 兩直線被第三條直線所截

①在兩直線的相同位置上,在第三條直線的同側(cè)(旁)的兩個角叫做同位角。

②在兩直線之間(內(nèi)部),在第三條直線的兩側(cè)(旁)的兩個角叫做內(nèi)錯角。

③在兩直線之間(內(nèi)部),在第三條直線的同側(cè)(旁)的兩個角叫做同旁內(nèi)角。

三、平行線的判定

①同位角相等

②內(nèi)錯角相等 兩直線平行

③同旁內(nèi)角互補(bǔ)

四、平行線的性質(zhì)

①兩直線平行,同位角相等。 ②兩直線平行,內(nèi)錯角相等。 ③兩直線平行,同旁內(nèi)角互補(bǔ)。

五、尺規(guī)作圖(用圓規(guī)和直尺作圖)

①作一條線段等于已知線段。 ②作一個角等于已知角。

第三章 三角形

一、認(rèn)識三角形

1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形。

2、三角形三邊的關(guān)系:兩邊之和大于第三邊;兩邊之差小于第三邊。

(已知三條線段確定能否組成三角形,已知兩邊求第三邊的取值范圍)

3、三角形的內(nèi)角和是180°;直角三角形的兩銳角互余。

銳角三角形 (三個角都是銳角)

4、三角形按角分類直角三角形 (有一個角是直角)

鈍角三角形 (有一個角是鈍角)

5、三角形的特殊線段:

a) 三角形的中線:連結(jié)頂點(diǎn)與對邊中點(diǎn)的線段。 (分成的兩個三角形面積相等)

b) 三角形的角平分線:內(nèi)角平分線與對邊的交點(diǎn)到內(nèi)角所在的頂點(diǎn)的線段。

c) 三角形的高:頂點(diǎn)到對邊的垂線段。 (每一種三角形的作圖)

二、全等三角形:

1、全等三角形:能夠重合的兩個三角形。

2、全等三角形的性質(zhì):全等三角形的對應(yīng)邊、對應(yīng)角相等。

3、全等三角形的判定:

判定方法

內(nèi) 容

簡稱

邊邊邊

三邊對應(yīng)相等的兩個三角形全等

SSS

邊角邊

兩邊與這兩邊的夾角對應(yīng)相等的兩個三角形全等

SAS

角邊角

兩角與這兩角的夾邊對應(yīng)相等的兩個三角形全等

ASA

角角邊

兩角與其中一個角的對邊對應(yīng)相等的兩個三角形全等

AAS

斜邊直角邊

斜邊與一條直角邊對應(yīng)相等的兩個直角三角形全等

HL

注意:三個角對應(yīng)相等的兩個三角形不能判定兩個三角形形全等;AAA

兩條邊與其中一條邊的對角對應(yīng)相等的兩個三角形不能判定兩個三角三角形全等。SSA

4、全等三角形的證明思路:

條 件

下一步的思路

運(yùn)用的判定方法

已經(jīng)兩邊對應(yīng)相等

找它們的夾角

SAS

找第三邊

SSS

已經(jīng)兩角對應(yīng)相等

找它們的夾邊

ASA

找其中一個角的對邊

AAS

已經(jīng)一角一邊

找另一個角

ASA或AAS

找另一邊

SAS

5、三角形具有穩(wěn)定性,

三、作三角形

1、已經(jīng)三邊作三角形

2、已經(jīng)兩邊與它們的夾角作三角形

3、已經(jīng)兩角與它們的夾邊作三角形(已經(jīng)兩角與其中一角的對邊轉(zhuǎn)化成這種情況)

4、已經(jīng)斜邊與一條直角邊作直角三角形

第四章 生活中的變量

一、變量、自變量與因變量

①兩個變量x與y,y隨x的改變而改變,那么x是自變量(先變的量),y是因變量(后變的量)。

二、變量之間的表示方法:

①列表法

②關(guān)系式法:能精確地反映自變量與因變量之間數(shù)值的對應(yīng)關(guān)系。

③圖象法:用水平方向的數(shù)軸(橫軸)上的點(diǎn)表示自變量,用堅(jiān)直方向的數(shù)軸(縱軸)表示因變量。

第五章 生活中的軸對稱

一、軸對稱圖形與軸對稱

①一個圖形沿某一條直線對折,直線兩旁的部分能完成重合的圖形叫做軸對稱圖形。這條直線叫做對稱軸。

②兩個圖形沿某一條直線折疊,這兩個圖形能完全重合,就說這兩個圖形關(guān)于這條直線成軸對稱。這條直線叫做對稱軸。

③常見的軸對稱圖形:線段(兩條對稱軸),角,長方形,正方形,等腰三角形,等邊三角形,等腰梯形,圓,扇形

二、角平分線的性質(zhì):角平分線上的點(diǎn)到角兩邊的距離相等。

∵ ∠1=∠2 PB⊥OB PA⊥OA

∴ PB=PA

三、線段垂直平分線:

①概念:垂直且平分線段的直線叫做這條線段的垂直平分線。

②性質(zhì):線段垂直平分線上的點(diǎn)到線段兩個端點(diǎn)的距離相等。

∵ OA=OB CD⊥AB

∴ PA=PB

四、等腰三角形性質(zhì): (有兩條邊相等的三角形叫做等腰三角形)

①等腰三角形是軸對稱圖形; (一條對稱軸)

②等腰三角形底邊上中線,底邊上的高,頂角的平分線重合; (三線合一)

③等腰三角形的兩個底角相等。 (簡稱:等邊對等角)

五、在一個三角形中,如果有兩個角相等,那么它所對的兩條邊也相等。(簡稱:等角對等邊)

六、等邊三角形的性質(zhì):等邊三角形是特殊的等腰三角形,它具有等腰三角形的所有性質(zhì)。

① 等邊三角形的三條邊相等,三個角都等于60; ②等邊三角形有三條對稱軸。

七、軸對稱的性質(zhì):

① 關(guān)于某條直線對稱的兩個圖形是全等形; ②對應(yīng)線段、對應(yīng)角相等;

② 對應(yīng)點(diǎn)的連線被對稱軸垂直且平分; ④對應(yīng)線段如果相交,那么交點(diǎn)在對稱軸上。

八、鏡子改變了什么:

1、物與像關(guān)于鏡面成軸對稱;(分清左右對稱與上下對稱)

2、常見的問題:①物體成像問題;②數(shù)字與字母成像問題;③時鐘成像問題

第六章 概 率

一、概率:反映事件發(fā)生可能性大小的數(shù)。 事件P的概率=

二、事件的分類

三、游戲是否公平:雙方事件發(fā)生的概率是否相等。

七年級下冊數(shù)學(xué)知識點(diǎn)總結(jié)

2 兩點(diǎn)之間線段最短

3 同角或等角的補(bǔ)角相等

4 同角或等角的余角相等

5 過一點(diǎn)有且只有一條直線和已知直線垂直

6 直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短

7 平行公理 經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行

8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9 同位角相等,兩直線平行

10 內(nèi)錯角相等,兩直線平行

11 同旁內(nèi)角互補(bǔ),兩直線平行

12兩直線平行,同位角相等

13 兩直線平行,內(nèi)錯角相等

14 兩直線平行,同旁內(nèi)角互補(bǔ)

15 定理 三角形兩邊的和大于第三邊

16 推論 三角形兩邊的差小于第三邊

17 三角形內(nèi)角和定理 三角形三個內(nèi)角的和等于180°

18 推論1 直角三角形的兩個銳角互余

19 推論2 三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和

20 推論3 三角形的一個外角大于任何一個和它不相鄰的內(nèi)角

21 全等三角形的對應(yīng)邊、對應(yīng)角相等

22邊角邊公理(SAS) 有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等

23 角邊角公理( ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等

24 推論(AAS) 有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等

25 邊邊邊公理(SSS) 有三邊對應(yīng)相等的兩個三角形全等

26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等 27 定理1 在角的平分線上的點(diǎn)到這個角的兩邊的距離相等

28 定理2 到一個角的兩邊的距離相同的點(diǎn),在這個角的平分線上

29 角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

30 等腰三角形的性質(zhì)定理 等腰三角形的兩個底角相等 (即等邊對等角)

31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊

32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

33 推論3 等邊三角形的各角都相等,并且每一個角都等于60°

34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

35 推論1 三個角都相等的三角形是等邊三角形

36 推論 2 有一個角等于60°的等腰三角形是等邊三角形

37 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半 38 直角三角形斜邊上的中線等于斜邊上的一半

39 定理 線段垂直平分線上的點(diǎn)和這條線段兩個端點(diǎn)的距離相等 ?

40 逆定理 和一條線段兩個端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

41 線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合

42 定理1 關(guān)于某條直線對稱的兩個圖形是全等形

43 定理 2 如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線

44定理3 兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上

45逆定理 如果兩個圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱

46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2 47勾股定理的逆定理 如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2 ,那么這個三角形是直角三角形

48定理 四邊形的內(nèi)角和等于360°

49四邊形的外角和等于360°

50多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180°

51推論 任意多邊的外角和等于360°

52平行四邊形性質(zhì)定理1 平行四邊形的對角相等

53平行四邊形性質(zhì)定理2 平行四邊形的對邊相等

54推論 夾在兩條平行線間的平行線段相等

55平行四邊形性質(zhì)定理3 平行四邊形的對角線互相平分

56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形

57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形

58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形

59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形

60矩形性質(zhì)定理1 矩形的四個角都是直角

61矩形性質(zhì)定理2 矩形的對角線相等

62矩形判定定理1 有三個角是直角的四邊形是矩形

63矩形判定定理2 對角線相等的平行四邊形是矩形

64菱形性質(zhì)定理1 菱形的四條邊都相等

65菱形性質(zhì)定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角

66菱形面積=對角線乘積的一半,即S=(a×b)÷2

67菱形判定定理1 四邊都相等的四邊形是菱形

68菱形判定定理2 對角線互相垂直的平行四邊形是菱形

69正方形性質(zhì)定理1 正方形的四個角都是直角,四條邊都相等

70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

71定理1 關(guān)于中心對稱的兩個圖形是全等的

72定理2 關(guān)于中心對稱的兩個圖形,對稱點(diǎn)連線都經(jīng)過對稱中心,并且被對稱中心平分 73逆定理 如果兩個圖形的對應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一 點(diǎn)平分,那么這兩個圖形關(guān)于這一點(diǎn)對稱

74等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個角相等

75等腰梯形的兩條對角線相等

76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形

77對角線相等的梯形是等腰梯形

78平行線等分線段定理 如果一組平行線在一條直線上截得的線段

相等,那么在其他直線上截得的線段也相等

79 推論1 經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰

80 推論2 經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第 三邊

2141210