初一數(shù)學(xué)課堂知識點(diǎn)
天才就是勤奮曾經(jīng)有人這樣說過。如果這話不完全正確,那至少在很大程度上是正確的。學(xué)習(xí),就算是天才,也是需要不斷練習(xí)與記憶的。下面是小編給大家整理的一些初一數(shù)學(xué)的知識點(diǎn),希望對大家有所幫助。
初一數(shù)學(xué)重要知識點(diǎn)
變量之間的關(guān)系
一理論理解
1、若Y隨X的變化而變化,則X是自變量Y是因變量。
自變量是主動發(fā)生變化的量,因變量是隨著自變量的變化而發(fā)生變化的量,數(shù)值保持不變的量叫做常量。
3、若等腰三角形頂角是y,底角是x,那么y與x的關(guān)系式為y=180-2x.
2、能確定變量之間的關(guān)系式:相關(guān)公式①路程=速度×?xí)r間②長方形周長=2×(長+寬)③梯形面積=(上底+下底)×高÷2④本息和=本金+利率×本金×?xí)r間。⑤總價=單價×總量。⑥平均速度=總路程÷總時間
二、列表法:采用數(shù)表相結(jié)合的形式,運(yùn)用表格可以表示兩個變量之間的關(guān)系。列表時要選取能代表自變量的一些數(shù)據(jù),并按從小到大的順序列出,再分別求出因變量的對應(yīng)值。列表法的特點(diǎn)是直觀,可以直接從表中找出自變量與因變量的對應(yīng)值,但缺點(diǎn)是具有局限性,只能表示因變量的一部分。
三.關(guān)系式法:關(guān)系式是利用數(shù)學(xué)式子來表示變量之間關(guān)系的等式,利用關(guān)系式,可以根據(jù)任何一個自變量的值求出相應(yīng)的因變量的值,也可以已知因變量的值求出相應(yīng)的自變量的值。
四、圖像注意:a.認(rèn)真理解圖象的含義,注意選擇一個能反映題意的圖象;b.從橫軸和縱軸的實(shí)際意義理解圖象上特殊點(diǎn)的含義(坐標(biāo)),特別是圖像的起點(diǎn)、拐點(diǎn)、交點(diǎn)
八、事物變化趨勢的描述:對事物變化趨勢的描述一般有兩種:
1.隨著自變量x的逐漸增加(大),因變量y逐漸增加(大)(或者用函數(shù)語言描述也可:因變量y隨著自變量x的增加(大)而增加(大));
2.隨著自變量x的逐漸增加(大),因變量y逐漸減小(或者用函數(shù)語言描述也可:因變量y隨著自變量x的增加(大)而減小).
注意:如果在整個過程中事物的變化趨勢不一樣,可以采用分段描述.例如在什么范圍內(nèi)隨著自變量x的逐漸增加(大),因變量y逐漸增加(大)等等.
九、估計(或者估算)對事物的估計(或者估算)有三種:
1.利用事物的變化規(guī)律進(jìn)行估計(或者估算).例如:自變量x每增加一定量,因變量y的變化情況;平均每次(年)的變化情況(平均每次的變化量=(尾數(shù)-首數(shù))/次數(shù)或相差年數(shù))等等;
2.利用圖象:首先根據(jù)若干個對應(yīng)組值,作出相應(yīng)的圖象,再在圖象上找到對應(yīng)的點(diǎn)對應(yīng)的因變量y的值;
3.利用關(guān)系式:首先求出關(guān)系式,然后直接代入求值即可.
初一下學(xué)期數(shù)學(xué)知識點(diǎn)
相交線與平行線
一、知識網(wǎng)絡(luò)結(jié)構(gòu)
二、知識要點(diǎn)
1、在同一平面內(nèi),兩條直線的位置關(guān)系有兩種:相交和平行,垂直是相交的一種特殊情況。
2、在同一平面內(nèi),不相交的兩條直線叫平行線。如果兩條直線只有一個公共點(diǎn),稱這兩條直線相交;如果兩條直線沒有公共點(diǎn),稱這兩條直線平行。
3、兩條直線相交所構(gòu)成的四個角中,有公共頂點(diǎn)且有一條公共邊的兩個角是
鄰補(bǔ)角。鄰補(bǔ)角的性質(zhì):鄰補(bǔ)角互補(bǔ)。如圖1所示,與互為鄰補(bǔ)角,
與互為鄰補(bǔ)角。+=180°;+=180°;+=180°;
+=180°。
4、兩條直線相交所構(gòu)成的四個角中,一個角的兩邊分別是另一個角的兩邊的反向延長線,這樣的兩個角互為對頂角。對頂角的性質(zhì):對頂角相等。如圖1所示,與互為對頂角。=;
=。
5、兩條直線相交所成的角中,如果有一個是直角或90°時,稱這兩條直線互相垂直,
其中一條叫做另一條的垂線。如圖2所示,當(dāng)=90°時,⊥。
垂線的性質(zhì):
性質(zhì)1:過一點(diǎn)有且只有一條直線與已知直線垂直。
性質(zhì)2:連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。
性質(zhì)3:如圖2所示,當(dāng)a⊥b時,====90°。
點(diǎn)到直線的距離:直線外一點(diǎn)到這條直線的垂線段的長度叫點(diǎn)到直線的距離。
6、同位角、內(nèi)錯角、同旁內(nèi)角基本特征:
①在兩條直線(被截線)的同一方,都在第三條直線(截線)的同一側(cè),這樣
的兩個角叫同位角。圖3中,共有對同位角:與是同位角;
與是同位角;與是同位角;與是同位角。
②在兩條直線(被截線)之間,并且在第三條直線(截線)的兩側(cè),這樣的兩個角叫內(nèi)錯角。圖3中,共有對內(nèi)錯角:與是內(nèi)錯角;與是內(nèi)錯角。
③在兩條直線(被截線)的之間,都在第三條直線(截線)的同一旁,這樣的兩個角叫同旁內(nèi)角。圖3中,共有對同旁內(nèi)角:與是同旁內(nèi)角;與是同旁內(nèi)角。
初一上冊數(shù)學(xué)知識點(diǎn)歸納
第一章有理數(shù)
(一)正負(fù)數(shù)
1.正數(shù):大于0的數(shù)。
2.負(fù)數(shù):小于0的數(shù)。
3.0即不是正數(shù)也不是負(fù)數(shù)。
4.正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。
(二)有理數(shù)
1.有理數(shù):由整數(shù)和分?jǐn)?shù)組成的數(shù)。包括:正整數(shù)、0、負(fù)整數(shù),正分?jǐn)?shù)、負(fù)分?jǐn)?shù)??梢詫懗蓛蓚€整之比的形式。(無理數(shù)是不能寫成兩個整數(shù)之比的形式,它寫成小數(shù)形式,小數(shù)點(diǎn)后的數(shù)字是無限不循環(huán)的。如:π)
2.整數(shù):正整數(shù)、0、負(fù)整數(shù),統(tǒng)稱整數(shù)。
3.分?jǐn)?shù):正分?jǐn)?shù)、負(fù)分?jǐn)?shù)。
(三)數(shù)軸
1.數(shù)軸:用直線上的點(diǎn)表示數(shù),這條直線叫做數(shù)軸。(畫一條直線,在直線上任取一點(diǎn)表示數(shù)0,這個零點(diǎn)叫做原點(diǎn),規(guī)定直線上從原點(diǎn)向右或向上為正方向;選取適當(dāng)?shù)拈L度為單位長度,以便在數(shù)軸上取點(diǎn)。)
2.數(shù)軸的三要素:原點(diǎn)、正方向、單位長度。
3.相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù)。0的相反數(shù)還是0。
4.絕對值:正數(shù)的絕對值是它本身,負(fù)數(shù)的絕對值是它的相反數(shù);0的絕對值是0,兩個負(fù)數(shù),絕對值大的反而小。
(四)有理數(shù)的加減法
1.先定符號,再算絕對值。
2.加法運(yùn)算法則:同號相加,到相同符號,并把絕對值相加。異號相加,取絕對值大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值?;橄喾磾?shù)的兩個數(shù)相加得0。一個數(shù)同0相加減,仍得這個數(shù)。
3.加法交換律:a+b=b+a兩個數(shù)相加,交換加數(shù)的位置,和不變。
4.加法結(jié)合律:(a+b)+c=a+(b+c)三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。
5.a-b=a+(-b)減去一個數(shù),等于加這個數(shù)的相反數(shù)。
初一數(shù)學(xué)課堂知識點(diǎn)相關(guān)文章:
★ 人教版初一數(shù)學(xué)知識點(diǎn)整理
★ 初一數(shù)學(xué)課本知識點(diǎn)總結(jié)
★ 新版初一數(shù)學(xué)基礎(chǔ)知識點(diǎn)