不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦>學(xué)習(xí)方法>備考資料>

數(shù)學(xué)必修二復(fù)習(xí)提綱

時間: 自暢0 分享

高中數(shù)學(xué)相對初中要難一些,因此在學(xué)習(xí)方法上也會有一些差異。但是只要你做好復(fù)習(xí)提綱,問題也不是很大,下面小編給大家分享一些數(shù)學(xué)必修二復(fù)習(xí)提綱,希望能夠幫助大家,歡迎閱讀!

數(shù)學(xué)必修二復(fù)習(xí)提綱

一、直線與方程

(1)直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

(2)直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

②過兩點的直線的斜率公式:

注意下面四點:(1)當(dāng)時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標(biāo)直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標(biāo)先求斜率得到。

(3)直線方程

①點斜式:直線斜率k,且過點

注意:當(dāng)直線的斜率為0°時,k=0,直線的方程是y=y1。

當(dāng)直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標(biāo)都等于x1,所以它的方程是x=x1。

②斜截式:,直線斜率為k,直線在y軸上的截距為b

③兩點式:()直線兩點,

④截矩式:

其中直線與軸交于點,與軸交于點,即與軸、軸的截距分別為。

⑤一般式:(A,B不全為0)

注意:各式的適用范圍特殊的方程如:

平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

(5)直線系方程:即具有某一共同性質(zhì)的直線

(一)平行直線系

平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

(二)垂直直線系

垂直于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

(三)過定點的直線系

(ⅰ)斜率為k的直線系:,直線過定點;

(ⅱ)過兩條直線,的交點的直線系方程為

(為參數(shù)),其中直線不在直線系中。

(6)兩直線平行與垂直

當(dāng),時,;

注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。

(7)兩條直線的交點

相交

交點坐標(biāo)即方程組的一組解。

方程組無解;方程組有無數(shù)解與重合

(8)兩點間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個點,

(9)點到直線距離公式:一點到直線的距離

(10)兩平行直線距離公式

在任一直線上任取一點,再轉(zhuǎn)化為點到直線的距離進行求解。

二、圓的方程

1、圓的定義:平面內(nèi)到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑。

2、圓的方程

(1)標(biāo)準(zhǔn)方程,圓心,半徑為r;

(2)一般方程

當(dāng)時,方程表示圓,此時圓心為,半徑為

當(dāng)時,表示一個點;當(dāng)時,方程不表示任何圖形。

(3)求圓方程的方法:

一般都采用待定系數(shù)法:先設(shè)后求。確定一個圓需要三個獨立條件,若利用圓的標(biāo)準(zhǔn)方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);

另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置。

3、直線與圓的位置關(guān)系:

直線與圓的位置關(guān)系有相離,相切,相交三種情況:

(1)設(shè)直線,圓,圓心到l的距離為,則有;;

(2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設(shè)點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程

(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

設(shè)圓,

兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

當(dāng)時兩圓外離,此時有公切線四條;

當(dāng)時兩圓外切,連心線過切點,有外公切線兩條,內(nèi)公切線一條;

當(dāng)時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

當(dāng)時,兩圓內(nèi)切,連心線經(jīng)過切點,只有一條公切線;

當(dāng)時,兩圓內(nèi)含;當(dāng)時,為同心圓。

注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線

圓的輔助線一般為連圓心與切線或者連圓心與弦中點

三、立體幾何初步

1、柱、錐、臺、球的結(jié)構(gòu)特征

(1)棱柱:

幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

(2)棱錐

幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

(3)棱臺:

幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點

(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成

幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個矩形。

(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側(cè)面展開圖是一個扇形。

(6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點;③側(cè)面展開圖是一個弓形。

(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

2、空間幾何體的三視圖

定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、

俯視圖(從上向下)

注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度。

3、空間幾何體的直觀圖——斜二測畫法

斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;

②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

4、柱體、錐體、臺體的表面積與體積

(1)幾何體的表面積為幾何體各個面的面積的和。

(2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)

(3)柱體、錐體、臺體的體積公式

(4)球體的表面積和體積公式:V=;S=

4、空間點、直線、平面的位置關(guān)系

公理1:如果一條直線的兩點在一個平面內(nèi),那么這條直線是所有的點都在這個平面內(nèi)。

應(yīng)用:判斷直線是否在平面內(nèi)

用符號語言表示公理1:

公理2:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線

符號:平面α和β相交,交線是a,記作α∩β=a。

符號語言:

公理2的作用:

①它是判定兩個平面相交的方法。

②它說明兩個平面的交線與兩個平面公共點之間的關(guān)系:交線x共點。

③它可以判斷點在直線上,即證若干個點共線的重要依據(jù)。

公理3:經(jīng)過不在同一條直線上的三點,有且只有一個平面。

推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。

公理3及其推論作用:

①它是空間內(nèi)確定平面的依據(jù)

②它是證明平面重合的依據(jù)

公理4:平行于同一條直線的兩條直線互相平行

空間直線與直線之間的位置關(guān)系

①異面直線定義:不同在任何一個平面內(nèi)的兩條直線

②異面直線性質(zhì):既不平行,又不相交。

③異面直線判定:過平面外一點與平面內(nèi)一點的直線與平面內(nèi)不過該店的直線是異面直線

④異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。

求異面直線所成角步驟:

A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上。

B、證明作出的角即為所求角

C、利用三角形來求角

(7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補。

(8)空間直線與平面之間的位置關(guān)系

直線在平面內(nèi)——有無數(shù)個公共點.

三種位置關(guān)系的符號表示:aαa∩α=Aa‖α

(9)平面與平面之間的位置關(guān)系:平行——沒有公共點;α‖β

相交——有一條公共直線。α∩β=b

5、空間中的平行問題

(1)直線與平面平行的判定及其性質(zhì)

線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。

線線平行線面平行

線面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。線面平行線線平行

(2)平面與平面平行的判定及其性質(zhì)

兩個平面平行的判定定理

(1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行

(線面平行→面面平行),

(2)如果在兩個平面內(nèi),各有兩組相交直線對應(yīng)平行,那么這兩個平面平行。

(線線平行→面面平行),

(3)垂直于同一條直線的兩個平面平行,

兩個平面平行的性質(zhì)定理

(1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行。(面面平行→線面平行)

(2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行。(面面平行→線線平行)

7、空間中的垂直問題

(1)線線、面面、線面垂直的定義

①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。

②線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直。

③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。

(2)垂直關(guān)系的判定和性質(zhì)定理

①線面垂直判定定理和性質(zhì)定理

判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面。

性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。

②面面垂直的判定定理和性質(zhì)定理

判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直。

性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面。

9、空間角問題

(1)直線與直線所成的角

①兩平行直線所成的角:規(guī)定為。

②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。

③兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。

(2)直線和平面所成的角

①平面的平行線與平面所成的角:規(guī)定為。

②平面的垂線與平面所成的角:規(guī)定為。

③平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個平面所成的角。

求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”。

在“作角”時依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點到面的垂線,

在解題時,注意挖掘題設(shè)中兩個主要信息:

(1)斜線上一點到面的垂線;

(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線。

(3)二面角和二面角的平面角

①二面角的定義:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。

②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。

③直二面角:平面角是直角的二面角叫直二面角。

兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角

④求二面角的方法

定義法:在棱上選擇有關(guān)點,過這個點分別在兩個面內(nèi)作垂直于棱的射線得到平面角

垂面法:已知二面角內(nèi)一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角

如何快速學(xué)好數(shù)學(xué)

一、課內(nèi)重視聽講,課后及時復(fù)習(xí)。

新知識的接受,數(shù)學(xué)能力的培養(yǎng)主要在課堂上進行,所以要特點重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。上課時要緊跟老師的思路,積極展開思維預(yù)測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎(chǔ)知識和基本技能的學(xué)習(xí),課后要及時復(fù)習(xí)不留疑點。

首先要在做各種習(xí)題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不采用不清楚立即翻書之舉。

認(rèn)真獨立完成作業(yè),勤于思考,從某種意義上講,應(yīng)不造成不懂即問的學(xué)習(xí)作風(fēng),對于有些題目由于自己的思路不清,一時難以解出,應(yīng)讓自己冷靜下來認(rèn)真分析題目,盡量自己解決。在每個階段的學(xué)習(xí)中要進行整理和歸納總結(jié),把知識的點、線、面結(jié)合起來交織成知識網(wǎng)絡(luò),納入自己的知識體系。

二、適當(dāng)多做題,養(yǎng)成良好的解題習(xí)慣。

要想學(xué)好數(shù)學(xué),多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。

對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。

在平時要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態(tài),在考試中能運用自如。實踐證明:越到關(guān)鍵時候,你所表現(xiàn)的解題習(xí)慣與平時練習(xí)無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養(yǎng)成良好的解題習(xí)慣是非常重要的。

三、調(diào)整心態(tài),正確對待考試。

首先,應(yīng)把主要精力放在基礎(chǔ)知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎(chǔ)性的題目,而對于那些難題及綜合性較強的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。

調(diào)整好自己的心態(tài),使自己在任何時候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。

在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎(chǔ)題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學(xué)會嘗試得分,使自己的水平正常甚至超常發(fā)揮。

由此可見,要把數(shù)學(xué)學(xué)好就得找到適合自己的學(xué)習(xí)方法,了解數(shù)學(xué)學(xué)科的特點,使自己進入數(shù)學(xué)的廣闊天地中去。

數(shù)學(xué)的思維方法

一、解答數(shù)學(xué)題的轉(zhuǎn)化思維,是指在解決問題的過程中遇到障礙時,通過改變問題的方向,從不同的角度,把問題由一種形式轉(zhuǎn)換成另一種形式,尋求最佳方法,使問題變得更簡單、更清晰。

二、逆向思維也叫求異思維,它是對司空見慣的似乎已成定論的事物或觀點反過來思考的一種思維方式。敢于“反其道而思之”,讓思維向?qū)α⒚娴姆较虬l(fā)展,從問題的相反面深入地進行探索,樹立新思想,創(chuàng)立新形象。

三、邏輯思維,是人們在認(rèn)識過程中借助于概念、判斷、推理等思維形式對事物進行觀察、比較、分析、綜合、抽象、概括、判斷、推理的思維過程。邏輯思維,在解決邏輯推理問題時使用廣泛。

四、創(chuàng)新思維是指以新穎獨創(chuàng)的方法解決問題的思維過程,通過這種思維能突破常規(guī)思維的界限,以超常規(guī)甚至反常規(guī)的方法、視角去思考問題,提得出與眾不同的解決方案??煞譃椴町愋浴⑻剿魇?、優(yōu)化式及否定性四種。

五、類比思維是指根據(jù)事物之間某些相似性質(zhì),將陌生的、不熟悉的問題與熟悉問題或其他事物進行比較,發(fā)現(xiàn)知識的共性,找到其本質(zhì),從而解決問題的思維方法。

六、對應(yīng)思維是在數(shù)量關(guān)系之間(包括量差、量倍、量率)建立一種直接聯(lián)系的思維方法。比較常見的是一般對應(yīng)(如兩個量或多個量的和差倍之間的對應(yīng)關(guān)系)和量率對應(yīng)。

七、形象思維,主要是指人們在認(rèn)識世界的過程中,對事物表象進行取舍時形成的,是指用直觀形象的表象,解決問題的思維方法。想象是形象思維的高級形式也是其一種基本方法。

八、系統(tǒng)思維也叫整體思維,系統(tǒng)思維法是指在解題時對具體題目所涉及到的知識點有一個系統(tǒng)的認(rèn)識,即拿到題目先分析、判斷屬于什么知識點,然后回憶這類問題分為哪幾種類型,以及對應(yīng)的解決方法。


數(shù)學(xué)必修二復(fù)習(xí)提綱相關(guān)文章

2019年高中數(shù)學(xué)必修二知識點總結(jié)(復(fù)習(xí)提綱)

高中數(shù)學(xué)必修二知識點總結(jié)

高中數(shù)學(xué)必修二知識點總結(jié)2020

高一數(shù)學(xué)必修二所有公式總結(jié)

高中數(shù)學(xué)必修2空間幾何體知識點歸納總結(jié)

高一數(shù)學(xué)必修二知識點總結(jié)

高二數(shù)學(xué)必修二知識點總結(jié)

高一數(shù)學(xué)必修2知識點總結(jié)

2021高一必修二數(shù)學(xué)知識點總結(jié)

高中數(shù)學(xué)必修知識點

數(shù)學(xué)必修二復(fù)習(xí)提綱

高中數(shù)學(xué)相對初中要難一些,因此在學(xué)習(xí)方法上也會有一些差異。但是只要你做好復(fù)習(xí)提綱,問題也不是很大,下面小編給大家分享一些數(shù)學(xué)必修二復(fù)習(xí)提綱,希望能夠幫助大家,歡迎閱讀!數(shù)學(xué)必修二復(fù)習(xí)提綱一、直線與方程
推薦度:
點擊下載文檔文檔為doc格式

精選文章

  • 高一數(shù)學(xué)必修二提綱
    高一數(shù)學(xué)必修二提綱

    數(shù)學(xué)固然是比較難的,但只要有心就能學(xué)會數(shù)學(xué)。數(shù)學(xué)難度是逐漸遞增的,課堂上講的知識點比較淺,下面小編給大家分享一些高一數(shù)學(xué)必修二提綱,希望

  • 數(shù)學(xué)人教版必修一提綱
    數(shù)學(xué)人教版必修一提綱

    做數(shù)學(xué)題速度慢,不僅會延長平時的作業(yè)時間,更會影響在考試中的做題速度。以下是小編給大家整理的數(shù)學(xué)人教版必修一提綱,希望對大家有所幫助,歡

  • 高中必修一人教版數(shù)學(xué)總結(jié)提綱
    高中必修一人教版數(shù)學(xué)總結(jié)提綱

    學(xué)好數(shù)學(xué)興趣是前提和基礎(chǔ),如果對數(shù)學(xué)這門功課不感興趣,那么就無法把它學(xué)好,學(xué)起來也是極其痛苦的。以下是小編給大家整理的高中必修一人教版數(shù)

  • 數(shù)學(xué)必修四人教版提綱
    數(shù)學(xué)必修四人教版提綱

    數(shù)學(xué)不是教出來的,是悟出來的,是自學(xué)出來的。數(shù)學(xué)不是看會的,是算會的。學(xué)數(shù)學(xué)最重要的就是解題能力,以下是小編給大家整理的數(shù)學(xué)必修四人教版

1112909