2022高中數(shù)學必修一復習提綱
數(shù)學不是教出來的,是悟出來的,是自學出來的。數(shù)學不是看會的,是算會的。下面小編給大家分享一些2021高中數(shù)學必修一復習提綱,希望能夠幫助大家,歡迎閱讀!
高中數(shù)學必修一復習提綱
【集合與函數(shù)概念】
一、集合有關概念
1.集合的含義
2.集合的中元素的三個特性:
(1)元素的確定性如:世界上的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合
3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
注意:常用數(shù)集及其記法:XKb1.Com
非負整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集:NxN+
整數(shù)集:Z
有理數(shù)集:Q
實數(shù)集:R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合{x?R|x-3>2},{x|x-3>2}
3)語言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類:
(1)有限集含有有限個元素的集合
(2)無限集含有無限個元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關系
1.“包含”關系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關系:A=B(5≥5,且5≤5,則5=5)
實例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”
即:①任何一個集合是它本身的子集。AíA
②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)
③如果AíB,BíC,那么AíC
④如果AíB同時BíA那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集個數(shù):
有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集
三、集合的運算
運算類型交集并集補集
定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.
由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).
【基本初等函數(shù)】
一、指數(shù)函數(shù)
(一)指數(shù)與指數(shù)冪的運算
1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈x
當是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負數(shù)的次方根是一個負數(shù).此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).
當是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù).此時,正數(shù)的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數(shù)沒有偶次方根;0的任何次方根都是0,記作。
注意:當是奇數(shù)時,當是偶數(shù)時,
2.分數(shù)指數(shù)冪
正數(shù)的分數(shù)指數(shù)冪的意義,規(guī)定:
0的正分數(shù)指數(shù)冪等于0,0的負分數(shù)指數(shù)冪沒有意義
指出:規(guī)定了分數(shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質也同樣可以推廣到有理數(shù)指數(shù)冪.
3.實數(shù)指數(shù)冪的運算性質
(二)指數(shù)函數(shù)及其性質
1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域為R.
注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負數(shù)、零和1.
2、指數(shù)函數(shù)的圖象和性質
【函數(shù)的應用】
1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。
2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。即:
方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.
3、函數(shù)零點的求法:
求函數(shù)的零點:
1(代數(shù)法)求方程的實數(shù)根;
2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質找出零點.
4、二次函數(shù)的零點:
二次函數(shù).
1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.
2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.
3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.
學好數(shù)學的方法和技巧有哪些
一、數(shù)學的學習時間應該占全部總學科的50%左右
數(shù)學是一個費時費力的學科,無論文理。對于文科和理科來說,數(shù)學的高考成績都是重中之重。比如文科,鮮有聽到一個班文綜成績能差60分以上的,但數(shù)學別說60,80都能差出來。對于理科,物理,化學都需要大量的運算,數(shù)學的學習又是提供一種工具與思維。因此,對于之前的文理科,抑或是現(xiàn)在取消文理以后的偏文,偏理科來說,數(shù)學都是非常重要的。
二、要有一個自己的錯題記錄本
錯題本的意義,不是把每一道你做錯的題目都謄寫一遍,而是要把那些反復做不對,反復做都有差錯的題目保存下來。錯題本的本質,是對我們思維方式,思考習慣的一個糾正。在這個錯題本上的題目都應該是做了3遍還會出錯的題目。
而錯題本的記錄內(nèi)容,至少應該包括下面幾個內(nèi)容。1是完整的題目信息;2是用自己的方式演算出的正確答案(將參考答案照抄一遍沒有任何意義);3是自己對這個題目的評論,需要重點指出關鍵步驟,以及自己最初的想法與正確做法的差異在哪里。
三、要看課本
在經(jīng)過一段時間的學習以后,比如是一個章節(jié)的學習,就一定要拿出數(shù)學課本,找一個連貫的時間,靜靜地讀完數(shù)學課本里對應章節(jié)的每一段話,每一個字,包括所有的補充材料。當然,課后的習題,也都要通讀。在讀完這些內(nèi)容以后,最后還要翻開課本的目錄,對應這個章節(jié)的每一個小標題,靜心回憶一下每一個小標題的最重要的知識點,你最感興趣的內(nèi)容等等。
提高數(shù)學成績的竅門是什么
找漏洞
學生如何找自己學科上的漏洞呢?主要就是要在預習 時找漏洞。上課學生的學習目標明確,注意力才會集中,聽課效率才會高。除了預習,做題 也是一種很好的找漏洞的方式。
多做題不等于提高分數(shù),只有多補漏洞,才能提高分數(shù)
題目千千萬,我們是做不完的。做題的是為了掌握、鞏固知識點,如果已經(jīng)掌握了,就沒有必要再做了。學生應該把時間放在補漏洞上,預習也要引起高度重視。
不要輕易放過一道錯題
對于學生錯誤的習題,教師會講評一遍,學生更正一遍之后就了事,但這種態(tài)度是不正確的。從哪里倒下就在哪里爬起來,“錯題是個寶,天天少不了,每天都在找,積累為大考?!边@就要求學生反思三點,一、問題到底出在哪里?二、產(chǎn)生錯誤的根本是什么?三、如何做才能避免下次犯同樣的錯誤?如果每道錯題都利用好的,還怕成績不能提高嗎?
落實的關鍵是檢測和重復
落實就是硬道理??醋约貉a漏洞的效果如何最好的方式就是檢測,多次檢測沒有問題了,那么這個漏洞就不上了。補漏洞也不是一次、兩次就能解決,需要一定的重復。
既要“亡羊補牢”,更要“未雨綢繆”
考試后,教師逐題分析錯題、失分原因——找漏洞;制定切實有效的改進措施——想辦法;有針對性地加強專項訓練——補漏洞。有時“亡羊補牢”已經(jīng)晚了,我們更應該“未雨綢繆”。每天把學習上的問題記錄下來并解決落實好。考前的模擬測試,也是一個好辦法。
2021高中數(shù)學必修一復習提綱相關文章: