八年級數(shù)學(xué)知識點總結(jié)
學(xué)會整合知識點。把需要學(xué)習(xí)的信息、掌握的知識分類,做成思維導(dǎo)圖或知識點卡片,會讓你的大腦、思維條理清醒,方便記憶、溫習(xí)、掌握。接下來是小編為大家整理的八年級數(shù)學(xué)知識點,希望大家喜歡!
八年級數(shù)學(xué)知識點總結(jié)
等腰三角形判定
中線
1、等腰三角形底邊上的中線垂直底邊,平分頂角;
2、等腰三角形兩腰上的中線相等,并且它們的交點與底邊兩端點距離相等。
1、兩邊上中線相等的三角形是等腰三角形;
2、如果一個三角形的一邊中線垂直這條邊(平分這個邊的對角),那么這個三角形是等腰三角形
角平分線
1、等腰三角形頂角平分線垂直平分底邊;
2、等腰三角形兩底角平分線相等,并且它們的交點到底邊兩端點的距離相等。
1、如果三角形的頂角平分線垂直于這個角的對邊(平分對邊),那么這個三角形是等腰三角形;
2、三角形中兩個角的平分線相等,那么這個三角形是等腰三角形。
高線
1、等腰三角形底邊上的高平分頂角、平分底邊;
2、等腰三角形兩腰上的高相等,并且它們的交點和底邊兩端點距離相等。
1、如果一個三角形一邊上的高平分這條邊(平分這條邊的對角),那么這個三角形是等腰三角形;
2、有兩條高相等的三角形是等腰三角形。
八年級數(shù)學(xué)知識點
函數(shù)及其相關(guān)概念
1、變量與常量
在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有確定的值與它對應(yīng),那么就說x是自變量,y是x的函數(shù)。
2、函數(shù)解析式
用來表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。
3、函數(shù)的三種表示法及其優(yōu)缺點
(1)解析法
兩個變量間的函數(shù)關(guān)系,有時可以用一個含有這兩個變量及數(shù)字運(yùn)算符號的等式表示,這種表示法叫做解析法。
(2)列表法
把自變量x的一系列值和函數(shù)y的對應(yīng)值列成一個表來表示函數(shù)關(guān)系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數(shù)關(guān)系的方法叫做圖像法。
4、由函數(shù)解析式畫其圖像的一般步驟
(1)列表:列表給出自變量與函數(shù)的一些對應(yīng)值
(2)描點:以表中每對對應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點
(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。
八年級數(shù)學(xué)知識點
因式分解
1. 因式分解:把一個多項式化為幾個整式的積的形式,叫做把這個多項式因式分解;注意:因式分解與乘法是相反的兩個轉(zhuǎn)化.
2.因式分解的方法:常用“提取公因式法”、“公式法”、“分組分解法”、“十字相乘法”.
3.公因式的確定:系數(shù)的公約數(shù)?相同因式的最低次冪.
注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.
4.因式分解的公式:
(1)平方差公式: a2-b2=(a+ b)(a- b);
(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.
5.因式分解的注意事項:
(1)選擇因式分解方法的一般次序是:一 提取、二 公式、三 分組、四 十字;
(2)使用因式分解公式時要特別注意公式中的字母都具有整體性;
(3)因式分解的最后結(jié)果要求分解到每一個因式都不能分解為止;
(4)因式分解的最后結(jié)果要求每一個因式的首項符號為正;
(5)因式分解的最后結(jié)果要求加以整理;
(6)因式分解的最后結(jié)果要求相同因式寫成乘方的形式.
6.因式分解的解題技巧:(1)換位整理,加括號或去括號整理;(2)提負(fù)號;(3)全變號;(4)換元;(5)配方;(6)把相同的式子看作整體;(7)靈活分組;(8)提取分?jǐn)?shù)系數(shù);(9)展開部分括號或全部括號;(10)拆項或補(bǔ)項.
7.完全平方式:能化為(m+n)2的多項式叫完全平方式;對于二次三項式x2+px+q, 有“ x2+px+q是完全平方式 ? ”.
分式
1.分式:一般地,用A、B表示兩個整式,A÷B就可以表示為 的形式,如果B中含有字母,式子 叫做分式.
2.有理式:整式與分式統(tǒng)稱有理式;即 .
3.對于分式的兩個重要判斷:(1)若分式的分母為零,則分式無意義,反之有意義;(2)若分式的分子為零,而分母不為零,則分式的值為零;注意:若分式的分子為零,而分母也為零,則分式無意義.
4.分式的基本性質(zhì)與應(yīng)用:
(1)若分式的分子與分母都乘以(或除以)同一個不為零的整式,分式的值不變;
(2)注意:在分式中,分子、分母、分式本身的符號,改變其中任何兩個,分式的值不變;
即
(3)繁分式化簡時,采用分子分母同乘小分母的最小公倍數(shù)的方法,比較簡單.
5.分式的約分:把一個分式的分子與分母的公因式約去,叫做分式的約分;注意:分式約分前經(jīng)常需要先因式分解.
6.最簡分式:一個分式的分子與分母沒有公因式,這個分式叫做最簡分式;注意:分式計算的最后結(jié)果要求化為最簡分式.
7.分式的乘除法法則: .
8.分式的乘方: .
9.負(fù)整指數(shù)計算法則:
(1)公式: a0=1(a≠0), a-n= (a≠0);
(2)正整指數(shù)的運(yùn)算法則都可用于負(fù)整指數(shù)計算;
(3)公式: , ;
(4)公式: (-1)-2=1, (-1)-3=-1.
10.分式的通分:根據(jù)分式的基本性質(zhì),把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先確定最簡公分母.
11.最簡公分母的確定:系數(shù)的最小公倍數(shù)?相同因式的次冪.
12.同分母與異分母的分式加減法法則: .
13.含有字母系數(shù)的一元一次方程:在方程ax+b=0(a≠0)中,x是未知數(shù),a和b是用字母表示的已知數(shù),對x來說,字母a是x的系數(shù),叫做字母系數(shù),字母b是常數(shù)項,我們稱它為含有字母系數(shù)的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知數(shù),用x、y、z等表示未知數(shù).
14.公式變形:把一個公式從一種形式變換成另一種形式,叫做公式變形;注意:公式變形的本質(zhì)就是解含有字母系數(shù)的方程.特別要注意:字母方程兩邊同時乘以含字母的代數(shù)式時,一般需要先確認(rèn)這個代數(shù)式的值不為0.
15.分式方程:分母里含有未知數(shù)的方程叫做分式方程;注意:以前學(xué)過的,分母里不含未知數(shù)的方程是整式方程.
16.分式方程的增根:在解分式方程時,為了去分母,方程的兩邊同乘以了含有未知數(shù)的代數(shù)式,所以可能產(chǎn)生增根,故分式方程必須驗增根;注意:在解方程時,方程的兩邊一般不要同時除以含未知數(shù)的代數(shù)式,因為可能丟根.
17.分式方程驗增根的方法:把分式方程求出的根代入最簡公分母(或分式方程的每個分母),若值為零,求出的根是增根,這時原方程無解;若值不為零,求出的根是原方程的解;注意:由此可判斷,使分母的值為零的未知數(shù)的值可能是原方程的增根.
18.分式方程的應(yīng)用:列分式方程解應(yīng)用題與列整式方程解應(yīng)用題的方法一樣,但需要增加“驗增根”的程序.
八年級數(shù)學(xué)知識點梳理
1全等三角形的對應(yīng)邊、對應(yīng)角相等
2邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等
3角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等
4推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等
5邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個三角形全等
6斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等
7定理1在角的平分線上的點到這個角的兩邊的距離相等
8定理2到一個角的兩邊的距離相同的點,在這個角的平分線上
9角的平分線是到角的兩邊距離相等的所有點的集合
10等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)
21推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
22等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
23推論3等邊三角形的各角都相等,并且每一個角都等于60°
24等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
25推論1三個角都相等的三角形是等邊三角形
26推論2有一個角等于60°的等腰三角形是等邊三角形
27在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
28直角三角形斜邊上的中線等于斜邊上的一半
29定理線段垂直平分線上的點和這條線段兩個端點的距離相等
30逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
八年級數(shù)學(xué)知識點歸納
第十一章全等三角形
一.知識框架
二.知識概念
1.全等三角形:兩個三角形的形狀、大小、都一樣時,其中一個可以經(jīng)過平移、旋轉(zhuǎn)、對稱等運(yùn)動(或稱變換)使之與另一個重合,這兩個三角形稱為全等三角形。
2.全等三角形的性質(zhì):全等三角形的對應(yīng)角相等、對應(yīng)邊相等。
3.三角形全等的判定公理及推論有:
(1)“邊角邊”簡稱“SAS”
(2)“角邊角”簡稱“ASA”
(3)“邊邊邊”簡稱“SSS”
(4)“角角邊”簡稱“AAS”
(5)斜邊和直角邊相等的兩直角三角形(HL)。
4.角平分線推論:角的內(nèi)部到角的兩邊的距離相等的點在叫的平分線上。
5.證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關(guān)系),②、回顧三角形判定,搞清我們還需要什么,③、正確地書寫證明格式(順序和對應(yīng)關(guān)系從已知推導(dǎo)出要證明的問題).
在學(xué)習(xí)三角形的全等時,教師應(yīng)該從實際生活中的圖形出發(fā),引出全等圖形進(jìn)而引出全等三角形。通過直觀的理解和比較發(fā)現(xiàn)全等三角形的奧妙之處。在經(jīng)歷三角形的角平分線、中線等探索中激發(fā)學(xué)生的集合思維,啟發(fā)他們的靈感,使學(xué)生體會到集合的真正魅力。
第十二章軸對稱
一.知識框架
二.知識概念
1.對稱軸:如果一個圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
2.性質(zhì):(1)軸對稱圖形的對稱軸,是任何一對對應(yīng)點所連線段的垂直平分線。
(2)角平分線上的點到角兩邊距離相等。
(3)線段垂直平分線上的任意一點到線段兩個端點的距離相等。
(4)與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
(5)軸對稱圖形上對應(yīng)線段相等、對應(yīng)角相等。
3.等腰三角形的性質(zhì):等腰三角形的兩個底角相等,(等邊對等角)
4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。
5.等腰三角形的判定:等角對等邊。
6.等邊三角形角的特點:三個內(nèi)角相等,等于60°,
7.等邊三角形的判定:三個角都相等的三角形是等腰三角形。
有一個角是60°的等腰三角形是等邊三角形
有兩個角是60°的三角形是等邊三角形。
8.直角三角形中,30°角所對的直角邊等于斜邊的一半。
9.直角三角形斜邊上的中線等于斜邊的一半。
本章內(nèi)容要求學(xué)生在建立在軸對稱概念的基礎(chǔ)上,能夠?qū)ι钪械膱D形進(jìn)行分析鑒賞,親身經(jīng)歷數(shù)學(xué)美,正確理解等腰三角形、等邊三角形等的性質(zhì)和判定,并利用這些性質(zhì)來解決一些數(shù)學(xué)問題。
第十三章實數(shù)
一.知識框架
二.知識概念
1.算術(shù)平方根:一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么正數(shù)x叫做a的算術(shù)平方根,記作。0的算術(shù)平方根為0;從定義可知,只有當(dāng)a≥0時,a才有算術(shù)平方根。
2.平方根:一般地,如果一個數(shù)x的平方根等于a,即x2=a,那么數(shù)x就叫做a的平方根。
3.正數(shù)有兩個平方根(一正一負(fù))它們互為相反數(shù);0只有一個平方根,就是它本身;負(fù)數(shù)沒有平方根。
4.正數(shù)的立方根是正數(shù);0的立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。
5.數(shù)a的相反數(shù)是-a,一個正實數(shù)的絕對值是它本身,一個負(fù)數(shù)的絕對值是它的相反數(shù),0的絕對值是0
實數(shù)部分主要要求學(xué)生了解無理數(shù)和實數(shù)的概念,知道實數(shù)和數(shù)軸上的點一一對應(yīng),能估算無理數(shù)的大小;了解實數(shù)的運(yùn)算法則及運(yùn)算律,會進(jìn)行實數(shù)的運(yùn)算。重點是實數(shù)的意義和實數(shù)的分類;實數(shù)的運(yùn)算法則及運(yùn)算律。
第十四章一次函數(shù)
一.知識框架
二.知識概念
1.一次函數(shù):若兩個變量x,y間的關(guān)系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時,稱y是x的正比例函數(shù)。
2.正比例函數(shù)一般式:y=kx(k≠0),其圖象是經(jīng)過原點(0,0)的一條直線。
3.正比例函數(shù)y=kx(k≠0)的圖象是一條經(jīng)過原點的直線,當(dāng)k>0時,直線y=kx經(jīng)過第一、三象限,y隨x的增大而增大,當(dāng)k<0時,直線y=kx經(jīng)過第二、四象限,y隨x的增大而減小,在一次函數(shù)y=kx+b中:當(dāng)k>0時,y隨x的增大而增大;當(dāng)k<0時,y隨x的增大而減小。
4.已知兩點坐標(biāo)求函數(shù)解析式:待定系數(shù)法
一次函數(shù)是初中學(xué)生學(xué)習(xí)函數(shù)的開始,也是今后學(xué)習(xí)其它函數(shù)知識的基石。在學(xué)習(xí)本章內(nèi)容時,教師應(yīng)該多從實際問題出發(fā),引出變量,從具體到抽象的認(rèn)識事物。培養(yǎng)學(xué)生良好的變化與對應(yīng)意識,體會數(shù)形結(jié)合的思想。在教學(xué)過程中,應(yīng)更加側(cè)重于理解和運(yùn)用,在解決實際問題的同時,讓學(xué)習(xí)體會到數(shù)學(xué)的實用價值和樂趣。
第十五章整式的乘除與分解因式
一.知識概念
1.同底數(shù)冪的乘法法則:(m,n都是正數(shù))
2..冪的乘方法則:(m,n都是正數(shù))
3.整式的乘法
(1)單項式乘法法則:單項式相乘,把它們的系數(shù)、相同字母分別相乘,對于只在一個單項式里含有的字母,連同它的指數(shù)作為積的一個因式。
(2)單項式與多項式相乘:單項式乘以多項式,是通過乘法對加法的分配律,把它轉(zhuǎn)化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。
(3).多項式與多項式相乘
多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。
4.平方差公式:
5.完全平方公式:
6.同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即(a≠0,m、n都是正數(shù),且m>n).
在應(yīng)用時需要注意以下幾點:
①法則使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a≠0.
②任何不等于0的數(shù)的0次冪等于1,即,如,(-2.50=1),則00無意義.
③任何不等于0的數(shù)的-p次冪(p是正整數(shù)),等于這個數(shù)的p的次冪的倒數(shù),即(a≠0,p是正整數(shù)),而0-1,0-3都是無意義的;當(dāng)a>0時,a-p的值一定是正的;當(dāng)a<0時,a-p的值可能是正也可能是負(fù)的,如,
④運(yùn)算要注意運(yùn)算順序.
7.整式的除法
單項式除法單項式:單項式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式;
多項式除以單項式:多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加.
8.分解因式:把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.
分解因式的一般方法:1.提公共因式法2.運(yùn)用公式法3.十字相乘法
分解因式的步驟:(1)先看各項有沒有公因式,若有,則先提取公因式;
(2)再看能否使用公式法;
(3)用分組分解法,即通過分組后提取各組公因式或運(yùn)用公式法來達(dá)到分解的目的;
(4)因式分解的最后結(jié)果必須是幾個整式的乘積,否則不是因式分解;
(5)因式分解的結(jié)果必須進(jìn)行到每個因式在有理數(shù)范圍內(nèi)不能再分解為止.
整式的乘除與分解因式這章內(nèi)容知識點較多,表面看來零碎的概念和性質(zhì)也較多,但實際上是密不可分的整體。在學(xué)習(xí)本章內(nèi)容時,應(yīng)多準(zhǔn)備些小組合作與交流活動,培養(yǎng)學(xué)生推理能力、計算能力。在做題中體驗數(shù)學(xué)法則、公式的簡潔美、和諧美,提高做題效率。
八年級數(shù)學(xué)知識點總結(jié)相關(guān)文章:
3.人教版八年級數(shù)學(xué)上冊知識點總結(jié)