初二數(shù)學(xué)考試知識點
數(shù)學(xué)是考試的重點考察科目,數(shù)學(xué)知識的積累和解題方法的掌握,需要科學(xué)有效的復(fù)習(xí)方法,同時需要持之以恒的堅持。下面是小編給大家整理的一些初二數(shù)學(xué)的知識點,希望對大家有所幫助。
初二上學(xué)期數(shù)學(xué)知識點
數(shù)據(jù)的分析
1、平均數(shù)
①一般地,對于n個數(shù)x1x2...xn,我們把(x1+x2+???+xn)叫做這n個數(shù)的算數(shù)平均數(shù),簡稱平均數(shù)記為。
②在實際問題中,一組數(shù)據(jù)里的各個數(shù)據(jù)的“重要程度”未必相同,因而在計算,這組數(shù)據(jù)的平均數(shù)時,往往給每個數(shù)據(jù)一個權(quán),叫做加權(quán)平均數(shù)。
2、中位數(shù)與眾數(shù)
①中位數(shù):一般地,n個數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)。
②一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。
③平均數(shù)、中位數(shù)和眾數(shù)都是描述數(shù)據(jù)集中趨勢的統(tǒng)計量。
④計算平均數(shù)時,所有數(shù)據(jù)都參加運算,它能充分地利用數(shù)據(jù)所提供的信息,因此在現(xiàn)實生活中較為常用,但他容易受極端值影響。
⑤中位數(shù)的優(yōu)點是計算簡單,受極端值影響較小,但不能充分利用所有數(shù)據(jù)的信息。
⑥各個數(shù)據(jù)重復(fù)次數(shù)大致相等時,眾數(shù)往往沒有特別意義。
3、從統(tǒng)計圖分析數(shù)據(jù)的集中趨勢
4、數(shù)據(jù)的離散程度
①實際生活中,除了關(guān)心數(shù)據(jù)的集中趨勢外,人們還關(guān)注數(shù)據(jù)的離散程度,即它們相對于集中趨勢的偏離情況。一組數(shù)據(jù)中數(shù)據(jù)與最小數(shù)據(jù)的差,(稱為極差),就是刻畫數(shù)據(jù)離散程度的一個統(tǒng)計量。
②數(shù)學(xué)上,數(shù)據(jù)的離散程度還可以用方差或標準差刻畫。
③方差是各個數(shù)據(jù)與平均數(shù)差的平方的平均數(shù)。
④其中是x1,x2.....xn平均數(shù),s2是方差,而標準差就是方差的算術(shù)平方根。
⑤一般而言,一組數(shù)據(jù)的極差、方差或標準差越小,這組數(shù)據(jù)就越穩(wěn)定。
提公因式法
1.在運用提取公因式法把一個多項式因式分解時,首先觀察多項式的結(jié)構(gòu)特點,確定多項式的公因式.當多項式各項的公因式是一個多項式時,可以用設(shè)輔助元的方法把它轉(zhuǎn)化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當多項式各項的公因式是隱含的時候,要把多項式進行適當?shù)淖冃危蚋淖兎?,直到可確定多項式的公因式.
2.運用公式x2+(p+q)x+pq=(x+q)(x+p)進行因式分解要注意:
1)必須先將常數(shù)項分解成兩個因數(shù)的積,且這兩個因數(shù)的代數(shù)和等于
一次項的系數(shù).
2)將常數(shù)項分解成滿足要求的兩個因數(shù)積的多次嘗試,一般步驟:
①列出常數(shù)項分解成兩個因數(shù)的積各種可能情況;
②嘗試其中的哪兩個因數(shù)的和恰好等于一次項系數(shù).
3)將原多項式分解成(x+q)(x+p)的形式.
分式的乘除法
1.把一個分式的分子與分母的公因式約去,叫做分式的約分.
2.分式進行約分的目的是要把這個分式化為最簡分式.
3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.
4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.
5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然后再按-1的偶次方為正、奇次方為負來處理.當然,簡單的分式之分子分母可直接乘方.
6.注意混合運算中應(yīng)先算括號,再算乘方,然后乘除,最后算加減.
初二數(shù)學(xué)復(fù)習(xí)方法總結(jié)
一、初中數(shù)學(xué)中考復(fù)習(xí)方法:
數(shù)學(xué)家華羅庚曾經(jīng)說過:“聰明在于學(xué)習(xí),天才在于勤奮”,勤能補拙是良訓(xùn),一分辛勞一分才。
1.復(fù)習(xí)一定要做到勤
勤動手:做題不要看,一定要算,不會的知識點寫下來,記在筆記本上。
勤動口:不會的有疑問的一定要問老師,時間不等人,在沒有時間可以浪費。而且學(xué)會與同學(xué)討論問題。
勤動耳:老師講的復(fù)習(xí)課一定要聽,不要認為這道題會,老師講就可以溜號,須知溫故可知新。
勤動腦:善于思考問題,積極思考問題——吸收、儲存信息
勤動腿:不要參加過于激烈的運動,防止受傷影響學(xué)習(xí),但要運動,每天慢跑30分鐘即可,報至狀態(tài)。
2.初中數(shù)學(xué)復(fù)習(xí)還要強調(diào)兩個要點:
一要:動手,二要:動腦。
動腦就是要學(xué)會觀察分析問題,學(xué)會思考,不要拿到題就做,找到已知和未知之間的聯(lián)系,多問幾個為什么,多體會考的哪個知識點。
動手就是多實踐,多做題,要拳不離手曲不離口。同學(xué)就是題不離手,這兩個要點大家要記住并且要堅持住。動腦又動手,才能地發(fā)揮大腦的效率。這也是老師的經(jīng)驗。
3.用心做到三個一遍
上課要認真聽一遍:聽老師講的方法知識等。
動手算一遍:按照老師的思路算一遍看看是否融會貫通。
認真想一遍:想想為什么這么做題,考的哪個知識。
4.重視簡單的學(xué)習(xí)過程
讀好一本教科書它是教學(xué)、中考的主要依據(jù);
記好一本筆記方法知識是教師多年經(jīng)驗的結(jié)晶,每人自己準備一本錯題集;
做好做凈一本習(xí)題集它是使知識拓寬;
這些看似平凡簡單,但是確實老師親身的體驗,用心觀察我們的中考、高考狀元,其實他們每天重復(fù)的不就是老師剛剛說的嗎?
沒有寶典神功,只有普普通通。最最難能可貴的是堅持。
資源可以的話,找?guī)滋淄鶎玫钠谀┛荚囶},是自己縣區(qū)的,其他縣區(qū)也可以(考點差不多一樣的),在規(guī)定時間內(nèi),摸摸底,熟悉每個章節(jié)考的的題型,練練自己的做題效率。很多同學(xué)第一次做練習(xí)出錯,如果不及時糾正、反思,而僅僅是把答案改正,那么他沒有真正地弄明白自己到底錯在什么地方,也就沒弄明白如何應(yīng)用這部分知識,最終會導(dǎo)致在今后遇到類似的問題一錯再錯。
初二數(shù)學(xué)考試知識點相關(guān)文章:
★ 初二數(shù)學(xué)知識點復(fù)習(xí)整理
★ 初二數(shù)學(xué)期末整式重點知識歸納總結(jié)