初二數學北師大版知識點總結
學習從來無捷徑,循序漸進登高峰。如果說學習一定有捷徑,那只能是勤奮,因為努力永遠不會騙人。學習需要勤奮,做任何事情都需要勤奮。下面是小編給大家整理的一些初二數學的知識點,希望對大家有所幫助。
初二下學期數學知識點
分式
一.概念:如果A、B表示兩個整式,并且B中含有字母,那么式子A/B叫做分式(fraction)。
二.基本性質:分式的分子與分母同乘或除以一個不等于0的整式,分式的值不變。
三計算法則:乘法法則:分式乘分式,用分子的積作為積的分子,分母的積作為分母。
分式除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
四.分式乘方要把分子、分母分別乘方。
a^-n=1/a^n(a≠0)這就是說,a^-n(a≠0)是a^n的倒數。
五.分式方程檢驗方法:將整式方程的解帶入最簡公分母,如果最簡公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個解不是原分式方程的解。
第十七章反比例函數
一.概念形如y=k/x(k為常數,k≠0)的函數稱為反比例函數(inverseproportionalfunction)。
二.性質:反比例函數的圖像屬于雙曲線(hyperbola)。
當k>0時,雙曲線的兩支分別位于第一、第三象限,在每個象限內y值隨x值的增大而減小;
當k<0時,雙曲線的兩支分別位于第二、第四象限,在每個象限內y值隨x值的增大而增大。
第十八章勾股定理
一.概念勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a^2+b^2=c^2
勾股定理逆定理:如果三角形三邊長a,b,c滿足a^2+b^2=c^2,那么這個三角形是直角三角形。
二.命題:經過證明被確認正確的命題叫做定理(theorem)。
我們把題設、結論正好相反的兩個命題叫做互逆命題。如果把其中一個叫做原命題,那么另一個叫做它的逆命題。(例:勾股定理與勾股定理逆定理)
第十九章四邊形
一.平行四邊形的概念:有兩組對邊分別平行的四邊形叫做平行四邊形。
二.平行四邊形的性質:平行四邊形的對邊相等;平行四邊形的對角相等。平行四邊形的對角線互相平分。
三.平行四邊形的判定:
1.兩組對邊分別相等的四邊形是平行四邊形;
2.對角線互相平分的四邊形是平行四邊形;
3.兩組對角分別相等的四邊形是平行四邊形;
4.一組對邊平行且相等的四邊形是平行四邊形。
5.三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。
四.直角三角形的性質:直角三角形斜邊上的中線等于斜邊的一半。
五.矩形的性質:矩形的四個角都是直角;矩形的對角線平分且相等。
初二數學課本上學期知識點
第二章實數
定義:任何有限小數或無限循環(huán)小數都是有理數。無限不循環(huán)小數叫做無理數
(有理數總可以用有限小數或無限循環(huán)小數表示)
一般地,如果一個正數x的平方等于a,那么這個正數x就叫做a的算術平方根。
特別地,我們規(guī)定0的算術平方根是0。
一般地,如果一個數x的平方等于a,那么這個數x就叫做a的平方根(也叫二次方根)
一個正數有兩個平方根;0只有一個平方根,它是0本身;負數沒有平方根。
求一個數a的平方根的運算,叫做開平方,其中a叫做被開方數。
一般地,如果一個數x的立方等于a,那么這個數x就叫做a的立方根(也叫做三次方根)。
正數的立方根是正數;0的立方根是0;負數的立方根是負數。
求一個數a的立方根的運算,叫做開立方,其中a叫做被開方數。
有理數和無理數統稱為實數,即實數可以分為有理數和無理數。
每一個實數都可以用數軸上的一個點來表示;反過來,數軸上的每一個點都表示一個實數。即實數和數軸上的點是一一對應的。
在數軸上,右邊的點表示的數比左邊的點表示的數大。
數學知識點八年級
概率初步
23.1確定事件和隨機事件
1.在一定條件下必定出現的現象叫做必然事件
2.在一定條件下必定不出現的現象叫做不可能事件
3.必然事件和不可能事件統稱為確定事件
4.那些在一定條件下可能出現也可能不出現的現象叫做隨機時間,也稱為不確定事件23.2事件發(fā)生的可能性
23.3時間的概率
1.用來表示某事件發(fā)生的可能性大小的數叫做這個事件的概率
2.規(guī)定用0作為不可能事件的概率;用1作為必然時間的概率
3.事件A的概率我們記作P(A);對于隨機事件A,可知0
4.如果一項可以反復進行的試驗具有以下特點:
(1)試驗的結果是有限個,各種結果可能出現的機會是均等的;
(2)任何兩個結果不可能同時出現
那么這樣的試驗叫做等可能試驗
5.一般地,如果一個試驗共有n個等可能的結果,事件A包含其中的k個結果,那么事件A的概率P(A)=事件A包含的可能結果數/所有的可能結果總數=k/n
6.列舉法、樹狀圖、列表
23.4概率計算舉例