初二數(shù)學人教版知識點
每一門科目都有自己的學習方法,但其實都是萬變不離其中的,數(shù)學其實和語文英語一樣,也是要記、要背、要講練的。下面是小編給大家整理的一些初二數(shù)學知識點的學習資料,希望對大家有所幫助。
反證法
反證法是一種間接證法,它是先提出一個與命題的結(jié)論相反的假設,然后,從這個假設出發(fā),經(jīng)過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結(jié)論。
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;/至少有兩個。
歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發(fā),否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質(zhì)定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯(lián)系起來,通過運算達到求證的結(jié)果。所以用面積法來解幾何題,幾何元素之間關系變成數(shù)量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
幾何變換法
在數(shù)學問題的研究中,,常常運用變換法,把復雜性問題轉(zhuǎn)化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數(shù)學中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數(shù)學教學中。將圖形從相等靜止條件下的研究和運動中的研究結(jié)合起來,有利于對圖形本質(zhì)的認識。
幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對稱。
客觀性題的解題方法
選擇題是給出條件和結(jié)論,要求根據(jù)一定的關系找出正確答案的一類題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。
填空題是標準化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷準確迅速,有利于考查學生的分析判斷能力和計算能力等優(yōu)點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。
要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。
(1)直接推演法:直接從命題給出的條件出發(fā),運用概念、公式、定理等進行推理或運算,得出結(jié)論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。
(2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。
(3)特殊元素法:用合適的特殊元素(如數(shù)或圖形)代入題設條件或結(jié)論中去,從而獲得解答。這種方法叫特殊元素法。
(4)排除、篩選法:對于正確答案有且只有一個的選擇題,根據(jù)數(shù)學知識或推理、演算,把不正確的結(jié)論排除,余下的結(jié)論再經(jīng)篩選,從而作出正確的結(jié)論的解法叫排除、篩選法。
(5)圖解法:借助于符合題設條件的圖形或圖像的性質(zhì)、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
(6)分析法:直接通過對選擇題的條件和結(jié)論,作詳盡的分析、歸納和判斷,從而選出正確的結(jié)果,稱為分析法。
人教版數(shù)學知識點八年級
一、軸對稱圖形
1.把一個圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那么這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。這時我們也說這個圖形關于這條直線(成軸)對稱。
2.把一個圖形沿著某一條直線折疊,如果它能與另一個圖形完全重合,那么就說這兩個圖關于這條直線對稱。這條直線叫做對稱軸。折疊后重合的點是對應點,叫做對稱點
3、軸對稱圖形和軸對稱的區(qū)別與聯(lián)系
4.軸對稱的性質(zhì)
①關于某直線對稱的兩個圖形是全等形。
②如果兩個圖形關于某條直線對稱,那么對稱軸是任何一對對應點所連線段的垂直平分線。
③軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
④如果兩個圖形的對應點連線被同條直線垂直平分,那么這兩個圖形關于這條直線對稱。
二、線段的垂直平分線
1.經(jīng)過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。
2.線段垂直平分線上的點與這條線段的兩個端點的距離相等
3.與一條線段兩個端點距離相等的點,在線段的垂直平分線上
三、用坐標表示軸對稱小結(jié):
1.在平面直角坐標系中,關于x軸對稱的點橫坐標相等,縱坐標互為相反數(shù).關于y軸對稱的點橫坐標互為相反數(shù),縱坐標相等.
2.三角形三條邊的垂直平分線相交于一點,這個點到三角形三個頂點的距離相等
四、(等腰三角形)知識點回顧
1.等腰三角形的性質(zhì)
①.等腰三角形的兩個底角相等。(等邊對等角)
②.等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)
2、等腰三角形的判定:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等。(等角對等邊)
學好初中數(shù)學課前要預習
初中生想要學好數(shù)學,那么就要利用課前的時間將課上老師要講的內(nèi)容預習一下。初中數(shù)學課前的預習是要明白老師在課上大致所講的內(nèi)容,這樣有利于和方便初中生整理知識結(jié)構(gòu)。
初中生課前預習數(shù)學還能夠知道自己有哪些不明白的知識點,這樣在課上就會集中注意力去聽,不會出現(xiàn)溜號和走神的情況。同時課前預習還可以將知識點形成體系,可以幫助初中生建立完整的知識結(jié)構(gòu)。
2學習初中數(shù)學課上是關鍵
初中生想要學好學生,在課上就是一個字:跟。上初中數(shù)學課時跟住老師,老師講到哪里一定要跟上,仔細看老師的板書,隨時知道老師講的是哪里,涉及到的知識點是什么。有的初中生喜歡記筆記,提醒大家,初中數(shù)學課上的時候盡量不要記筆記。
你的主要目的是跟著老師,而不是一味的記筆記,即使有不會的地方也要快速簡短的記下來,可以在課后完善。跟上老師的思維是最重要的,這就意味著你明白了老師的分析和解題過程。
3課后可以適當做一些初中數(shù)學基礎題
在每學完一課后,初中生可以在課后做一些初中數(shù)學的基礎題型,在做這樣的題時,建議大家是,不要出現(xiàn)錯誤的情況,做完題后要學會思考和整理。當你的初中數(shù)學基礎題沒問題的時候,就可以做一些有點難度的提升題了,如果做不出來可以根據(jù)解析看題。
但是記住千萬不要大量的做這類題,初中生偶爾做一次有難度的題還是對數(shù)學的學習有幫助的,但是如果將重點放在這上面,沒有什么好處。同時要學會整理,將自己錯題歸納并總結(jié),
數(shù)學是由簡單明了的事項一步一步地發(fā)展而來,所以,只要學習數(shù)學的人老老實實地、一步一步地去理解,并同時記住其要點,以備以后之需用,就一定能理解其全部內(nèi)容.就是說,若理解了第一步,就必然能理解第二步,理解了第一步、第二步,就必然能理解第三步.這好比梯子的階級,在登梯子時,一級一級地往上登,無論多小的人,只要他的腿長足以跨過一級階梯,就一定能從第一級登上第二級,從第二級登上第三級、第四級,…….這時,只不過是反復地做同一件事,故不管誰都應該會做.
初二數(shù)學人教版知識點相關文章:
初二數(shù)學人教版知識點
下一篇:初二年級數(shù)學知識點