中考數(shù)學(xué)復(fù)習(xí)知識:實數(shù)
中考數(shù)學(xué)復(fù)習(xí)知識:實數(shù)
在復(fù)習(xí)數(shù)學(xué)的時候,我們要掌握好方法。下面是學(xué)習(xí)啦小編收集整理的中考數(shù)學(xué)《實數(shù)》復(fù)習(xí)知識以供大家學(xué)習(xí)。
一、重要概念
1.數(shù)的分類及概念
數(shù)系表:
說明:“分類”的原則:1)相稱(不重、不漏)2)有標(biāo)準(zhǔn)
2.非負(fù)數(shù):正實數(shù)與零的統(tǒng)稱。(表為:x≥0)
常見的非負(fù)數(shù)有:
性質(zhì):若干個非負(fù)數(shù)的和為0,則每個非負(fù)擔(dān)數(shù)均為0。
3.倒數(shù):①定義及表示法
②性質(zhì):A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a>1時,1/a<1;D.積為1。
4.相反數(shù):①定義及表示法
?、谛再|(zhì):A.a≠0時,a≠-a;B.a與-a在數(shù)軸上的位置;C.和為0,商為-1。
5.數(shù)軸:①定義(“三要素”)
?、谧饔茫篈.直觀地比較實數(shù)的大小;B.明確體現(xiàn)絕對值意義;C.建立點與實數(shù)的一一對應(yīng)關(guān)系。
6.奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)—自然數(shù))
定義及表示:
奇數(shù):2n-1
偶數(shù):2n(n為自然數(shù))
7.絕對值:①定義(兩種):
代數(shù)定義:
幾何定義:數(shù)a的絕對值頂?shù)膸缀我饬x是實數(shù)a在數(shù)軸上所對應(yīng)的點到原點的距離。
?、讴│≥0,符號“││”是“非負(fù)數(shù)”的標(biāo)志;③數(shù)a的絕對值只有一個;④處理任何類型的題目,只要其中有“││”出現(xiàn),其關(guān)鍵一步是去掉“││”符號。
二、實數(shù)的運算
1.運算法則(加、減、乘、除、乘方、開方)
2.運算定律(五個—加法[乘法]交換律、結(jié)合律;[乘法對加法的]
分配律)
3.運算順序:A.高級運算到低級運算;B.(同級運算)從“左”
到“右”(如5÷×5);C.(有括號時)由“小”到“中”到“大”。
三、應(yīng)用舉例(略)
附:典型例題
1.已知:a、b、x在數(shù)軸上的位置如下圖,求證:│x-a│+│x-b│
=b-a.
2.已知:a-b=-2且ab<0,(a≠0,b≠0),判斷a、b的符號。
中考數(shù)學(xué)相關(guān)文章:
一、重要概念
1.總體:考察對象的全體。
2.個體:總體中每一個考察對象。
3.樣本:從總體中抽出的一部分個體。
4.樣本容量:樣本中個體的數(shù)目。
5.眾數(shù):一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)。
6.中位數(shù):將一組數(shù)據(jù)按大小依次排列,處在最中間位置的一個數(shù)(或最中間位置的兩個數(shù)據(jù)的平均數(shù))
二、計算方法
1.樣本平均數(shù):⑴;⑵若,,…,,則(a—常數(shù),,,…,接近較整的常數(shù)a);⑶加權(quán)平均數(shù):;⑷平均數(shù)是刻劃數(shù)據(jù)的集中趨勢(集中位置)的特征數(shù)。通常用樣本平均數(shù)去估計總體平均數(shù),樣本容量越大,估計越準(zhǔn)確。
2.樣本方差:⑴;⑵若,,…,,則(a—接近、、…、的平均數(shù)的較“整”的常數(shù));若、、…、較“小”較“整”,則;⑶樣本方差是刻劃數(shù)據(jù)的離散程度(波動大小)的特征數(shù),當(dāng)樣本容量較大時,樣本方差非常接近總體方差,通常用樣本方差去估計總體方差。
3.樣本標(biāo)準(zhǔn)差:
三、應(yīng)用舉例(略)
第四章直線形
重點:相交線與平行線、三角形、四邊形的有關(guān)概念、判定、性質(zhì)。
內(nèi)容提要
一、直線、相交線、平行線
1.線段、射線、直線三者的區(qū)別與聯(lián)系
從“圖形”、“表示法”、“界限”、“端點個數(shù)”、“基本性質(zhì)”等方面加以分析。
2.線段的中點及表示
3.直線、線段的基本性質(zhì)(用“線段的基本性質(zhì)”論證“三角形兩邊之和大于第三邊”)
4.兩點間的距離(三個距離:點-點;點-線;線-線)
5.角(平角、周角、直角、銳角、鈍角)
6.互為余角、互為補角及表示方法
7.角的平分線及其表示
8.垂線及基本性質(zhì)(利用它證明“直角三角形中斜邊大于直角邊”)
9.對頂角及性質(zhì)
10.平行線及判定與性質(zhì)(互逆)(二者的區(qū)別與聯(lián)系)
11.常用定理:①同平行于一條直線的兩條直線平行(傳遞性);②同垂直于一條直線的兩條直線平行。
12.定義、命題、命題的組成
13.公理、定理
14.逆命題
二、三角形
分類:⑴按邊分;
⑵按角分
1.定義(包括內(nèi)、外角)
2.三角形的邊角關(guān)系:⑴角與角:①內(nèi)角和及推論;②外角和;③n邊形內(nèi)角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中
3.三角形的主要線段
討論:①定義②××線的交點—三角形的×心③性質(zhì)
?、俑呔€②中線③角平分線④中垂線⑤中位線
?、乓话闳切微铺厥馊切危褐苯侨切?、等腰三角形、等邊三角形
4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質(zhì)
5.全等三角形
?、乓话闳切稳鹊呐卸?SAS、ASA、AAS、SSS)
⑵特殊三角形全等的判定:①一般方法②專用方法
6.三角形的面積
?、乓话阌嬎愎舰菩再|(zhì):等底等高的三角形面積相等。
7.重要輔助線
?、胖悬c配中點構(gòu)成中位線;⑵加倍中線;⑶添加輔助平行線
8.證明方法
⑴直接證法:綜合法、分析法
?、崎g接證法—反證法:①反設(shè)②歸謬③結(jié)論
?、亲C線段相等、角相等常通過證三角形全等
?、茸C線段倍分關(guān)系:加倍法、折半法
?、勺C線段和差關(guān)系:延結(jié)法、截余法
⑹證面積關(guān)系:將面積表示出來