不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學習啦>學習方法>各學科學習方法>數(shù)學學習方法>

2017中考數(shù)學三角函數(shù)的知識點

時間: 芷瓊1026 分享

  三角函數(shù) 是初中數(shù)學的主要內(nèi)容,也是中考考查的重點內(nèi)容。下面是學習啦小編為你整理的2017中考數(shù)學三角函數(shù)的知識點,一起來看看吧。

  2017中考數(shù)學三角函數(shù)的知識點:誘導公式

  公式一: 設α為任意角,終邊相同的角的同一三角函數(shù)的值相等:

  sin(2kπ+α)=sinα k∈z

  cos(2kπ+α)=cosα k∈z

  tan(2kπ+α)=tanα k∈z

  cot(2kπ+α)=cotα k∈z

  公式二: 設α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關系:

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  2017中考數(shù)學三角函數(shù)的知識點:三角函數(shù)關系

  倒數(shù)關系

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  商的關系

  sinα/cosα=tanα=secα/cscα

  cosα/sinα=cotα=cscα/secα

  平方關系

  sin^2(α)+cos^2(α)=1

  1+tan^2(α)=sec^2(α)

  1+cot^2(α)=csc^2(α)

  同角三角函數(shù)關系六角形記憶法

  構造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。

  倒數(shù)關系

  對角線上兩個函數(shù)互為倒數(shù);

  商數(shù)關系

  六邊形任意一頂點上的函數(shù)值等于與它相鄰的兩個頂點上函數(shù)值的乘積。(主要是兩條虛線兩端的三角函數(shù)值的乘積,下面4個也存在這種關系。)。由此,可得商數(shù)關系式。

  平方關系

  在帶有陰影線的三角形中,上面兩個頂點上的三角函數(shù)值的平方和等于下面頂點上的三角函數(shù)值的平方。

  兩角和差公式

  sin(α+β)=sinαcosβ+cosαsinβ

  sin(α-β)=sinαcosβ-cosαsinβ

  cos(α+β)=cosαcosβ-sinαsinβ

  cos(α-β)=cosαcosβ+sinαsinβ

  tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

  二倍角的正弦、余弦和正切公式

  sin2α=2sinαcosα

  cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

  tan2α=2tanα/(1-tan^2(α))

  tan(1/2*α)=(sinα)/(1+cosα)=(1-cosα)/sinα

  半角的正弦、余弦和正切公式

  sin^2(α/2)=(1-cosα)/2

  cos^2(α/2)=(1+cosα)/2

  tan^2(α/2)=(1-cosα)/(1+cosα)

  tan(α/2)=(1—cosα)/sinα=sinα/1+cosα

  萬能公式

  sinα=2tan(α/2)/(1+tan^2(α/2))

  cosα=(1-tan^2(α/2))/(1+tan^2(α/2))

  tanα=(2tan(α/2))/(1-tan^2(α/2))

  三倍角的正弦、余弦和正切公式

  sin3α=3sinα-4sin^3(α)

  cos3α=4cos^3(α)-3cosα

  tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

  2017中考數(shù)學三角函數(shù)的知識點:銳角三角函數(shù)公式

  兩角和與差的三角函數(shù):

  sin(A+B) = sinAcosB+cosAsinB

  sin(A-B) = sinAcosB-cosAsinB

  cos(A+B) = cosAcosB-sinAsinB

  cos(A-B) = cosAcosB+sinAsinB

  tan(A+B) = (tanA+tanB)/(1-tanAtanB)

  tan(A-B) = (tanA-tanB)/(1+tanAtanB)

  cot(A+B) = (cotAcotB-1)/(cotB+cotA)

  cot(A-B) = (cotAcotB+1)/(cotB-cotA)

  三角和的三角函數(shù):

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  輔助角公式:

  Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

  sint=B/(A^2+B^2)^(1/2)

  cost=A/(A^2+B^2)^(1/2)

  tant=B/A

  Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

  倍角公式:

  sin(2α)=2sinα·cosα=2/(tanα+cotα)

  cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

  tan(2α)=2tanα/[1-tan^2(α)]

  三倍角公式:

  sin(3α)=3sinα-4sin^3(α)

  cos(3α)=4cos^3(α)-3cosα

  半角公式:

  sin(α/2)=±√((1-cosα)/2)

  cos(α/2)=±√((1+cosα)/2)

  tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

  降冪公式:

  sin^2(α)=(1-cos(2α))/2=versin(2α)/2

  cos^2(α)=(1+cos(2α))/2=covers(2α)/2

  tan^2(α)=(1-cos(2α))/(1+cos(2α))

  萬能公式:

  sinα=2tan(α/2)/[1+tan^2(α/2)]

  cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

  tanα=2tan(α/2)/[1-tan^2(α/2)]

  積化和差公式:

  sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

  cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

  cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

  sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

  和差化積公式:

  sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

  sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

  cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

  cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

  推導公式:

  tanα+cotα=2/sin2α

  tanα-cotα=-2cot2α

  1+cos2α=2cos^2α

  1-cos2α=2sin^2α

  1+sinα=(sinα/2+cosα/2)^2


猜你感興趣的:

1.2017高考數(shù)學三角函數(shù)知識點總結

2.2017中考數(shù)學知識點歸納

3.2017高考數(shù)學三角函數(shù)考點分析和命題趨勢

4.2017中考數(shù)學重點及易錯點匯總

5.2017中考數(shù)學60個易錯點總結

2017中考數(shù)學三角函數(shù)的知識點

三角函數(shù) 是初中數(shù)學的主要內(nèi)容,也是中考考查的重點內(nèi)容。下面是學習啦小編為你整理的2017中考數(shù)學三角函數(shù)的知識點,一起來看看吧。 2017中考數(shù)學三角函數(shù)的知識點:誘導公式 公式一: 設為任意角,終邊相同的角的同一三角函數(shù)的值相等
推薦度:
點擊下載文檔文檔為doc格式
3227051