高中數(shù)學(xué)要“探究式”的學(xué)習(xí)
一、計算能力。高中涉及到更多的內(nèi)容,而計算是一項(xiàng)基本技能,對于初中時候的有理數(shù)的運(yùn)算、二次根式的運(yùn)算、實(shí)數(shù)的運(yùn)算、整式和分式運(yùn)算,代數(shù)式的變形等方面如果還存在問題,應(yīng)該把部分再好好復(fù)習(xí)鞏固一下。若計算頻頻出現(xiàn)問題,會成為高中學(xué)習(xí)的一個巨大的絆腳石。
二、反思總結(jié)。很多同學(xué)進(jìn)入高中后都會在學(xué)法上遇到很大的困擾。因?yàn)楦咧兄R多,授課時間短,難度大,所以初中時候的一些學(xué)習(xí)方法在高中就不太適用了。對于高中的知識,不能認(rèn)為“做題多了自然就會了”,因?yàn)榈搅烁咧袥]有那么多時間來做題,因此一定要找到一種更有效地學(xué)習(xí)方法,那就是要在每次學(xué)習(xí)過后進(jìn)行總結(jié)和反思。總結(jié)知識點(diǎn)之間的聯(lián)系和區(qū)別,反思一下知識更深層的本質(zhì)。三、預(yù)習(xí)高一的知識。新課程標(biāo)準(zhǔn)的高一第一學(xué)期一般是講必修1和必修4兩本。目前高中采取模塊教學(xué),每個學(xué)期2個模塊。
必修1的主要內(nèi)容是三部分:
集合:數(shù)學(xué)中最基礎(chǔ),最通用的數(shù)學(xué)語言。貫穿整個高中以及現(xiàn)代數(shù)學(xué)都是以集合語言為基礎(chǔ)的。一定要學(xué)明白了。
函數(shù):通過初中對具體函數(shù)的學(xué)習(xí),在其基礎(chǔ)上研究任意函數(shù)研究其性質(zhì),如單調(diào)性,奇偶性,對稱性,周期性等。這一部分相對有一定的難度,而且與初中的聯(lián)系比較緊?;境醯群瘮?shù):指數(shù)和對數(shù)的運(yùn)算以及利用前面學(xué)到的函數(shù)性質(zhì)研究指數(shù)函數(shù),對數(shù)函數(shù)和冪函數(shù)。這部分知識有新的計算,并且應(yīng)用前面的函數(shù)性質(zhì)學(xué)習(xí)新的函數(shù)。
必修4的主要內(nèi)容也分為三部分:
三角函數(shù):對于初中的角的概念進(jìn)行擴(kuò)充,涉及到三角函數(shù)的運(yùn)算以及三角函數(shù)的性質(zhì)。
平面向量:這是數(shù)學(xué)里面一種新的常用的工具,通過向量的方法可以方便的解決很多三角函數(shù)的問題。這種方法與平面直角坐標(biāo)系的聯(lián)系比較多,但與函數(shù)有所不同,應(yīng)注意區(qū)別與聯(lián)系。
三角恒等變換:這部分主要是三角的運(yùn)算,屬于公式很多,運(yùn)算量也比較大的內(nèi)容。統(tǒng)觀上述高一第一學(xué)期的內(nèi)容可見知識非常多,而且這些知識在高考中的比重也比較大,因此若在高一一開始不能學(xué)好,對于后面的學(xué)習(xí)是會有一定影響的。因此,要考慮到初高中知識的差異,對自己的學(xué)法進(jìn)行改進(jìn),最后要適當(dāng)?shù)念A(yù)習(xí)一下新高一的內(nèi)容,以期很快的適應(yīng)高中的數(shù)學(xué)學(xué)習(xí)。