六年級(jí)數(shù)學(xué)上冊(cè)復(fù)習(xí)知識(shí):整數(shù)和小數(shù)的應(yīng)用
六年級(jí)數(shù)學(xué)上冊(cè)復(fù)習(xí)知識(shí):整數(shù)和小數(shù)的應(yīng)用
培養(yǎng)良好的學(xué)習(xí)興趣是一件非常重要的事情。下面是學(xué)習(xí)啦小編收集整理的小學(xué)六年級(jí)數(shù)學(xué)上冊(cè)《整數(shù)和小數(shù)的應(yīng)用》的復(fù)習(xí)知識(shí)點(diǎn)以供大家學(xué)習(xí)。
整數(shù)和小數(shù)的應(yīng)用
1 簡(jiǎn)單應(yīng)用題
(1) 簡(jiǎn)單應(yīng)用題:只含有一種基本數(shù)量關(guān)系,或用一步運(yùn)算解答的應(yīng)用題,通常叫做簡(jiǎn)單應(yīng)用題。
(2) 解題步驟:
a 審題理解題意:了解應(yīng)用題的內(nèi)容,知道應(yīng)用題的條件和問題。讀題時(shí),不丟字不添字邊讀邊思考,弄明白題中每句話的意思。也可以復(fù)述條件和問題,幫助理解題意。
b選擇算法和列式計(jì)算:這是解答應(yīng)用題的中心工作。從題目中告訴什么,要求什么著手,逐步根據(jù)所給的條件和問題,聯(lián)系四則運(yùn)算的含義,分析數(shù)量關(guān)系,確定算法,進(jìn)行解答并標(biāo)明正確的單位名稱。
C檢驗(yàn):就是根據(jù)應(yīng)用題的條件和問題進(jìn)行檢查看所列算式和計(jì)算過程是否正確,是否符合題意。如果發(fā)現(xiàn)錯(cuò)誤,馬上改正。
2 復(fù)合應(yīng)用題
(1)有兩個(gè)或兩個(gè)以上的基本數(shù)量關(guān)系組成的,用兩步或兩步以上運(yùn)算解答的應(yīng)用題,通常叫做復(fù)合應(yīng)用題。
(2)含有三個(gè)已知條件的兩步計(jì)算的應(yīng)用題。
求比兩個(gè)數(shù)的和多(少)幾個(gè)數(shù)的應(yīng)用題。
比較兩數(shù)差與倍數(shù)關(guān)系的應(yīng)用題。
(3)含有兩個(gè)已知條件的兩步計(jì)算的應(yīng)用題。
已知兩數(shù)相差多少(或倍數(shù)關(guān)系)與其中一個(gè)數(shù),求兩個(gè)數(shù)的和(或差)。
已知兩數(shù)之和與其中一個(gè)數(shù),求兩個(gè)數(shù)相差多少(或倍數(shù)關(guān)系)。
(4)解答連乘連除應(yīng)用題。
(5)解答三步計(jì)算的應(yīng)用題。
(6)解答小數(shù)計(jì)算的應(yīng)用題:小數(shù)計(jì)算的加法、減法、乘法和除法的應(yīng)用題,他們的數(shù)量關(guān)系、結(jié)構(gòu)、和解題方式都與正式應(yīng)用題基本相同,只是在已知數(shù)或未知數(shù)中間含有小數(shù)。
(7)常見的數(shù)量關(guān)系:
總價(jià)= 單價(jià)×數(shù)量
路程= 速度×時(shí)間
工作總量=工作時(shí)間×工效
總產(chǎn)量=單產(chǎn)量×數(shù)量
3、典型應(yīng)用題
具有獨(dú)特的結(jié)構(gòu)特征的和特定的解題規(guī)律的復(fù)合應(yīng)用題,通常叫做典型應(yīng)用題。
(1)平均數(shù)問題:平均數(shù)是等分除法的發(fā)展。
解題關(guān)鍵:在于確定總數(shù)量和與之相對(duì)應(yīng)的總份數(shù)。
算術(shù)平均數(shù):已知幾個(gè)不相等的同類量和與之相對(duì)應(yīng)的份數(shù),求平均每份是多少。數(shù)量關(guān)系式:數(shù)量之和÷數(shù)量的個(gè)數(shù)=算術(shù)平均數(shù)。
(2) 歸一問題:已知相互關(guān)聯(lián)的兩個(gè)量,其中一種量改變,另一種量也隨之而改變,其變化的規(guī)律是相同的,這種問題稱之為歸一問題。
數(shù)量關(guān)系式:?jiǎn)我涣?times;份數(shù)=總數(shù)量(正歸一)
總數(shù)量÷單一量=份數(shù)(反歸一)
(7)行程問題:
關(guān)于走路、行車等問題,一般都是計(jì)算路程、時(shí)間、速度,叫做行程問題。解答這類問題首先要搞清楚速度、時(shí)間、路程、方向、速度和、速度差等概念,了解他們之間的關(guān)系,再根據(jù)這類問題的規(guī)律解答。
(13)雞兔問題:已知“雞兔”的總頭數(shù)和總腿數(shù)。求“雞”和“兔”各多少只的一類應(yīng)用題。通常稱為“雞兔問題”又稱雞兔同籠問題
解題關(guān)鍵:解答雞兔問題一般采用假設(shè)法,假設(shè)全是一種動(dòng)物(如全是“雞”或全是“兔”,然后根據(jù)出現(xiàn)的腿數(shù)差,可推算出某一種的頭數(shù)。
解題規(guī)律:(總腿數(shù)-雞腿數(shù)×總頭數(shù))÷一只雞兔腿數(shù)的差=兔子只數(shù)
兔子只數(shù)=(總腿數(shù)-2×總頭數(shù))÷2
如果假設(shè)全是兔子,可以有下面的式子:
雞的只數(shù)=(4×總頭數(shù)-總腿數(shù))÷2
兔的頭數(shù)=總頭數(shù)-雞的只數(shù)
例 雞兔同籠共 50 個(gè)頭, 170 條腿。問雞兔各有多少只?
兔子只數(shù) ( 170-2 × 50 )÷ 2 =35 (只)
雞的只數(shù) 50-35=15 (只)