2016年中考數(shù)學最有用的八個知識點匯總
2016年中考數(shù)學最有用的八個知識點匯總
經歷了一學期的努力奮戰(zhàn),同學們要如何準備復習呢?接下來是學習啦小編為大家?guī)淼?016年中考數(shù)學最有用的八個知識點匯總,供大家參考。
2016年中考數(shù)學最有用的八個知識點匯總:
1、 過兩點有且只有一條直線
2 、兩點之間線段最短
3 、同角或等角的補角相等
4 、同角或等角的余角相等
5、 過一點有且只有一條直線和已知直線垂直
6 、直線外一點與直線上各點連接的所有線段中,垂線段最短
7 、平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8、 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 、同位角相等,兩直線平行
10 、內錯角相等,兩直線平行
11 、同旁內角互補,兩直線平行
12 、兩直線平行,同位角相等
13、 兩直線平行,內錯角相等
14 、兩直線平行,同旁內角互補
15 、定理 三角形兩邊的和大于第三邊
16、 推論 三角形兩邊的差小于第三邊
17、 三角形內角和定理 三角形三個內角的
和等于180°
18 、推論1 直角三角形的兩個銳角互余
19、 推論2 三角形的一個外角等于和它不相鄰的兩個內角的和
20 、推論3 三角形的一個外角大于任何一個和它不相鄰的內角
21 、全等三角形的對應邊、對應角相等
22 、邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 、角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 、推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25、 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 、定理1 在角的平分線上的點到這個角的兩邊的距離相等
28、 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 、角的平分線是到角的兩邊距離相等的所有點的集合
30、 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 、推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊
32 、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 、推論3 等邊三角形的各角都相等,并且每一個角都等于60°
34 、等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35 、推論1 三個角都相等的三角形是等邊三角形
36 、推論 2 有一個角等于60°的等腰三角形是等邊三角形
37 、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
38 、直角三角形斜邊上的中線等于斜邊上的一半
39 、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40 、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、 定理1 關于某條直線對稱的兩個圖形是全等形
43 、定理 2 如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線
44、定理3 兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
45、逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱
46、勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2
47、勾股定理的逆定理 如果三角形的三邊長a、b、c有關a^2+b^2=c^2 ,那么這個三角形是直角三角形
48、定理 四邊形的內角和等于360°
49、四邊形的外角和等于360°
50、多邊形內角和定理 n邊形的內角的和等于(n-2)×180°
看過2016年中考數(shù)學最有用的八個知識點匯總的還看了: