不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 初中學(xué)習(xí)方法 > 初三學(xué)習(xí)方法 > 九年級數(shù)學(xué) >

九年級數(shù)學(xué)上冊期中試題卷

時(shí)間: 詩盈1200 分享

  數(shù)學(xué)想要學(xué)習(xí)的好就要多多做題,今天小編就給大家參考一下九年級數(shù)學(xué),有喜歡的就來收藏哦

  初中九年級數(shù)學(xué)上期中試題卷

  一、選擇題(本大題共16個(gè)小題,1~10題,每小題3分;11~16小題,每小題2分,

  共42分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)符合題目要求的)

  1.用配方法解方程x2-x-1=0時(shí),應(yīng)將其變形為( )

  A.(x-)2= B.(x+)2= C.(x-)2=0 D.(x-)2=

  2.窗欞即窗格(窗里面的橫的或豎的格)是中國傳統(tǒng)木構(gòu)建筑的框架結(jié)構(gòu)設(shè)計(jì),窗欞上

  雕刻有線槽和各種花紋,構(gòu)成種類繁多的優(yōu)美圖案.下列表示我國古代窗欞樣式結(jié)構(gòu)

  的圖案中,是中心對稱圖形但不是軸對稱圖形的是( )

  A. B. C. D.

  3.下列事件中,屬于必然事件的是( )

  A.三角形的外心到三邊的距離相等 B.某射擊運(yùn)動(dòng)員射擊一次,命中靶心

  C.任意畫一個(gè)三角形,其內(nèi)角和是180° D.拋一枚硬幣,落地后正面朝上

  4.如圖,將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<

  90°).若∠1=112°,則∠α的大小是( )

  A.68° B.20° C.28° D.22°

  5.如圖,BC是⊙O的弦,OA⊥BC,∠AOB=70°,則∠ADC的度數(shù)是( )

  A.70° B.35° C.45° D.60°

  6.如圖,在△ABC中,∠C=90°,AB=4,以C點(diǎn)為圓心,2為半徑作⊙C,則AB的中

  點(diǎn)O與⊙C的位置關(guān)系是( )

  A.點(diǎn)O在⊙C外 B.點(diǎn)O在⊙C上 C.點(diǎn)O在⊙C內(nèi) D.不能確定

  7.一塊等邊三角形的木板,邊長為1,現(xiàn)將木板沿水平線翻滾(如圖),那么B點(diǎn)從開始

  至結(jié)束所走過的路徑長度為( )

  A. B. C.4 D.2+

  8. 定義運(yùn)算“※”為:a※b=,如:1※(-2)=-1×(-2)2=-4.則函數(shù)y=2※x

  的圖象大致是( )

  9. 將量角器按如圖所示的方式放置在三角形紙板上,使點(diǎn)C在半圓上.點(diǎn)A、B的讀數(shù)

  分別為88°、30°,則∠ACB的大小為( )

  A.15° B.28° C.29° D.34°

  10.如圖,在半徑為10cm的圓形鐵片上切下一塊高為4cm的弓形鐵片,則弓形弦AB的

  長為( )

  A.8cm B.12cm C.16cm D.20cm

  11.已知一個(gè)圓錐的底面半徑為3cm,母線長為10cm,則這個(gè)圓錐的側(cè)面積為( )

  A.30πcm2 B.50πcm2 C.60πcm2 D.3πcm2

  12.如圖,衣櫥中掛著3套不同顏色的服裝,同一套服裝的上衣與褲子的顏色相同.若從

  衣櫥里各任取一件上衣和一條褲子,它們?nèi)∽酝惶椎母怕适? )

  A. B. C. D.

  13.河北省某市2018年現(xiàn)有森林和人工綠化面積為20萬畝,為了響應(yīng)十九大的“綠水青

  山就是金山銀山”,現(xiàn)計(jì)劃在兩年后將本市的綠化面積提高到24.2萬畝,設(shè)每年平均

  增長率為x,則列方程為( )

  A.20(1+x)×2=24.2 B.20(1+x)2=24.2×2

  C.20+20(1+x)+20(1+x)2=24.2 D.20(1+x)2=24.2

  14.如圖,邊長為3的正五邊形ABCDE,頂點(diǎn)A、B在半徑為3的圓上,其他各點(diǎn)在圓

  內(nèi),將正五邊形ABCDE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E第一次落在圓上時(shí),則點(diǎn)C轉(zhuǎn)

  過的度數(shù)為( )

  A.12° B.16° C.20° D.24°

  15.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點(diǎn)在第一象限,且過點(diǎn)(0,1)和

  (-1,0),下列結(jié)論:①ab<0,②b2>4,③0-1

  時(shí),y>0.其中正確結(jié)論的個(gè)數(shù)是( )

  A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)

  16.如圖,Rt△ABC中,∠ACB=90°,AC=BC,在以AB的中點(diǎn)O為坐標(biāo)原點(diǎn),AB所在

  直線為x軸建立的平面直角坐標(biāo)系中,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使點(diǎn)A旋轉(zhuǎn)至

  y軸的正半軸上的A′處,若AO=OB=2,則陰影部分面積為( )

  A.π B.π-1 C.+1 D.

  卷II(非選擇題,共78分)

  二、填空題(本大題共3個(gè)小題;共12分。17~18小題各3分,19小題有兩個(gè)空,每空

  3分,把答案寫在題中橫線上)

  17.在一個(gè)不透明的盒子中裝有n個(gè)小球,它們除顏色不同外,其余都相同,其中有4個(gè)

  是白球,每次試驗(yàn)前,將盒子中的小球搖勻,隨機(jī)摸出一個(gè)球記下顏色后再放回盒中,

  大量重復(fù)上述實(shí)驗(yàn)后發(fā)現(xiàn),摸到白球的頻率穩(wěn)定在0.4,那么可以推算出n大約是

  .

  18.如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長交⊙O于點(diǎn)E,連結(jié)EC.若

  AB=8,CD=2,則EC的長為 .

  19.如圖,在平面直角坐標(biāo)系xOy中,△OA1B1繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得△OA2B2;

  △OA2B2繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得△OA3B3;△OA3B3繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得

  △OA4B4;…;若點(diǎn)A1(1,0),B1(1,1),則點(diǎn)B4的坐標(biāo)是 ,點(diǎn)B2018的

  坐標(biāo)是 .

  三、解答題(本大題共7個(gè)小題;共66分。解答應(yīng)寫出文字說明、證明過程或演算步驟)

  20.(本小題滿分8分)

  關(guān)于x的一元二次方程x2-(k+3)x+2k+2=0.

  (1)若k=0,求方程的解;

  (2)求證:無論k取任何實(shí)數(shù)時(shí),方程總有兩個(gè)實(shí)數(shù)根.

  21.(本小題滿分8分)

  如圖,已知點(diǎn)E在Rt△ABC的斜邊AB上,以AE為直徑的⊙O與直角邊BC相切于 點(diǎn)D.

  (1)求證:∠1=∠2;

  (2)若BE=2,BD=4,求⊙O的半徑.

  22.(本小題滿分8分)

  在如圖所示的直角坐標(biāo)系中,每個(gè)小方格都是邊長為1的正方形,△ABC的頂點(diǎn)均在 格點(diǎn)上,點(diǎn)A的坐標(biāo)是(-3,-1).

  (1)以O(shè)為中心作出△ABC的中心對稱圖形△A1B1C1,并寫出點(diǎn)B1坐標(biāo);

  (2)以格點(diǎn)P為旋轉(zhuǎn)中心,將△ABC按順時(shí)針方向旋轉(zhuǎn)90°,得到△A′B′C′,且使點(diǎn)

  A的對應(yīng)點(diǎn)A′恰好落在△A1B1C1的內(nèi)部格點(diǎn)上(不含△A1B1C1的邊上),寫出點(diǎn)

  P的坐標(biāo),并畫出旋轉(zhuǎn)后的△A′B′C′.

  23.(本小題滿分9分)

  如圖,均勻的正四面體的各面依次標(biāo)有1,2,3,4四個(gè)數(shù).

  (1)同時(shí)拋擲兩個(gè)這樣的四面體,它們著地一面的數(shù)字相同的概率是多少?

  (2)現(xiàn)在有一張周杰倫演唱會(huì)的門票,小敏和小亮用拋擲這兩個(gè)四面體的方式來決定

  誰獲得門票,規(guī)則是:同時(shí)拋擲這兩個(gè)四面體,如果著地一面的數(shù)字之積為奇數(shù)

  小敏勝;如果著地一面的數(shù)字之積為偶數(shù)小亮勝(勝方獲得門票),如果是你,

  你愿意充當(dāng)小敏還是小亮,說明理由.

  24.(本小題滿分10分)

  如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,過點(diǎn)C的切線交AB的延長線于點(diǎn)F, 連接DF.

  (1)求證:DF是⊙O的切線;

  (2)連接BC,若∠BCF=30°,BF=2,求CD的長.

  25.(本小題滿分11分)

  衡水市是“中國內(nèi)畫鼻煙壺之祖”,某內(nèi)畫鼻煙壺產(chǎn)業(yè)大戶經(jīng)銷一種鼻煙壺新產(chǎn)品,現(xiàn) 準(zhǔn)備從國內(nèi)和國外兩種銷售方案中選擇一種進(jìn)行銷售,若只在國內(nèi)銷售,銷售價(jià)格y

  (元/件)與月銷售x(件)的函數(shù)關(guān)系式為y=-x+180,成本為30元/件,無論銷售

  多少,每月還需支出廣告費(fèi)6250元,設(shè)月利潤為w1(元).若只在國外銷售,銷售

  價(jià)格為180元/件,受各種不確定因素影響,成本為a元/件(a為常數(shù),20≤a≤60), 當(dāng)月銷售量為x(件)時(shí),每月還需繳納x2元的附加費(fèi),設(shè)月利潤為w2(元).

  (1)當(dāng)x=1000時(shí),y= 元/件,w1= 元.

  (2)分別求出w1,w2與x間的函數(shù)關(guān)系式(不必寫x的取值范圍).

  (3)當(dāng)x為何值時(shí),在國內(nèi)銷售的月利潤最大?若在國外銷售月利潤的最大值與國內(nèi)

  銷售月利潤最大值相同,求a的值.(參考數(shù)據(jù):≈1.4,≈1.7,≈2.2).

  26.(本小題滿分12分)

  如圖1,在等邊△ABC中,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接BE,CD, 點(diǎn)M、N、P分別是BE、CD、BC的中點(diǎn).

  (1)觀察猜想:圖1中,△PMN的形狀是 ;

  (2)探究證明:把△ADE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到圖2的位置,△PMN的形狀是否

  發(fā)生改變?并說明理由;

  (3)拓展延伸:把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=1,AB=3,請直接寫出

  △PMN的周長的最大值.

  參考答案

  1-5 DDCDB 6-10 BBCCC 11-16 ADDABD

  17.10 18.2 19.(1,-1),(-1,1)

  20.解:(1)當(dāng)k=0時(shí),方程為x2-3x+2=0,則(x-1)(x-2)=0,所以x-1=0或x-2=0,

  解得:x=1或x=2;

  (2)∵△=[-(k+3)]2-4×1×(2k+2)=k2+6k+9-8k-8=k2-2k+1=(k-1)2≥0,

  ∴方程總有2個(gè)實(shí)數(shù)根.

  21.證明:(1)連接OD,如圖,

  ∵BC為切線,∴OD⊥BC,

  ∵∠C=90°,∴OD∥AC,∴∠2=∠ODA,

  ∵OA=OD,∴∠ODA=∠1,∴∠1=∠2;

  解:(2)設(shè)⊙O的半徑為r,則OD=OE=r,

  在Rt△OBD中,r2+42=(r+2)2,解得r=3,即⊙O的半徑為3.

  22.解:(1)如圖所示:△A1B1C1,即為所求,點(diǎn)B1坐標(biāo)為(2,4);

  (2)如圖所示:點(diǎn)P的坐標(biāo)為:(1,-2),△A′B′C′即為所求.

  23.解:(1)畫樹狀圖如圖:共有16種等可能的結(jié)果數(shù),其中著地一面的數(shù)字相同的占

  4種,所以著地一面的數(shù)字相同的概率==;

  (2)充當(dāng)小亮.理由如下:

  共有16種等可能的結(jié)果數(shù),著地一面的數(shù)字之積為奇數(shù)有4種,著地一面的

  數(shù)字之積為偶數(shù)有12種,所以小敏勝的概率==;小亮勝的概率==,

  所以小亮獲得門票的機(jī)會(huì)大,愿意充當(dāng)小亮.

  24.解:(1)證明:連接OD,如圖,

  ∵CF是⊙O的切線,∴∠OCF=90°,

  ∴∠OCD+∠DCF=90°,∵直徑AB⊥弦CD,

  ∴CE=ED,即OF為CD的垂直平分線,∴CF=DF,

  ∴∠CDF=∠DCF,∵OC=OD,∴∠CDO=∠OCD,

  ∴∠CDO+∠CDF=∠OCD+∠DCF=90°,∴OD⊥DF,∴DF是⊙O的切線;

  (2)∵∠OCF=90°,∠BCF=30°,∴∠OCB=60°,∵OC=OB,∴△OCB為等邊

  三角形,∴∠COB=60°,∴∠CFO=30°,∴FO=2OC=2OB,∴FB=OB=OC=2,

  在Rt△OCE中,∵∠COE=60°,∴OE=OC=1,∴CE=,

  ∴CD=2CE=2.

  25.解:(1)根據(jù)題意得:w1=(y-30)x-6250=-x2+150x-6250,

  把x=1000代入y=-x+180得:y=-×1000+180=80,

  把x=1000代入w1=-x2+150x-6250得:

  w1=-×10002+150×1000-6250=43750,故答案為:80,43750,

  (2)由(1)可知:w1=-x2+150x-6250,由題意得:w2=(180-a)x-x2,

  (3)w1=-x2+150x-6250=-(x-750)2+50000,

  當(dāng)x=750時(shí),w1取到最大值50000,根據(jù)題意得:w2(最大)=(180-a)2=50000,

  解得:a1=320(舍去),a2=40,

  故當(dāng)x為750時(shí),在國內(nèi)銷售的利潤最大,若在國外銷售月利潤的最大值與

  國內(nèi)銷售月利潤最大值相同,a的值為40.

  26.解:(1)如圖1,∵△ABC為等邊三角形,∴AB=AC,∠ABC=∠ACB=60°,

  ∵AD=AE,∴BD=CE,∵點(diǎn)M、N、P分別是BE、CD、BC的中點(diǎn).

  ∴PM∥CE,PM=CE,PN∥BD,PN=BD,

  ∴PM=PN,∠BPM=∠BCA=60°,∠CPN=∠CBA=60°,

  ∴∠MPN=60°,∴△PMN為等邊三角形;

  故答案為等邊三角形;

  (2)△PMN的形狀不發(fā)生改變,

  仍然為等邊三角形.理由如下:

  連接CE、BD,如圖2,

  ∵AB=AC,AE=AD,∠BAC=∠DAE=60°,

  ∴把△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°可得到△ACE,∴BD=CE,∠ABD=∠ACE,

  與(1)一樣可得PM∥CE,PM=CE,PN∥BD,PN=BD,∴PM=PN,

  ∠BPM=∠BCE,∠CPN=∠CBD,∴∠BPM+∠CPN=∠CBD+∠BCE=∠ABC

  -∠ABD+∠ACB+∠ACE=60°+60°=120°,

  ∴∠MPN=60°,∴△PMN為等邊三角形.

  (3)∵PN=BD,∴當(dāng)BD的值最大時(shí),PN的值最大,

  ∵AB-AD≤BD≤AB+AD(當(dāng)且僅當(dāng)點(diǎn)B、A、D共線時(shí)取等號)

  ∴BD的最大值為1+3=4,∴PN的最大值為2,∴△PMN周長的最大值為6.

  秋期九年級上數(shù)學(xué)期中試題卷

  一、選擇題(每小題 4 分,共 48 分)

  1.拋物線 y  2(x  3)2 1的頂點(diǎn)坐標(biāo)是( )

  A.(3,1) B.(3,-1) C.(-3,1) D.(-3,-1)

  2.下列選項(xiàng)中屬于必然事件的是( )

  A.從只裝有黑球的袋子摸出一個(gè)白球

  B.不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓

  C.拋擲一枚硬幣,第一次正面朝上,第二次反面朝上

  D.每年 10 月 1 日是星期五

  3.一條水管的截面如圖所示,已知排水管的半徑 OB=10,水面寬 AB=16,則截面圓心 O 到水面的距離 OC 的的長是( )

  A.4 B.5 C.6 D.8

  第 3 題圖 第 5 題圖 第 6 題圖

  4.將拋物線 y  x2 先向左平移2 個(gè)單位,再向下平移3 個(gè)單位后所得拋物線的解析式為( )

  A. y  (x  2)2  3

  B. y  (x  2)2  3

  C. y  (x  2)2  3

  D.y  (x  2)2  3

  5.如圖,點(diǎn) A,B,C 在⊙O 上,若∠BOC=72º,則∠BAC 的度數(shù)是( ) A.18° B.36° C.54° D.72°

  6.甲、乙兩名同學(xué)在一次用頻率去估計(jì)概率的實(shí)驗(yàn)中,統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率,繪出的統(tǒng)計(jì)圖如圖所示,則符合這一結(jié)果的實(shí)驗(yàn)可能是( )

  A.擲一枚質(zhì)地均勻的正六面體的骰子,向上的一面點(diǎn)數(shù)是 1 點(diǎn)的概率

  B.拋一枚質(zhì)地均勻的硬幣,出現(xiàn)正面朝上的概率

  C.一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅桃的概率

  D.在“石頭、剪刀、布”的游戲中,小明隨機(jī)出的是“剪刀”的概率

  7.圓內(nèi)接四邊形 ABCD 中,若∠A∶∠B∶∠C =1∶2∶3,則∠D 的度數(shù)是( )

  A.45° B.60° C.90° D.135°

  8.下列命題正確的個(gè)數(shù)是( )

 ?、倨椒只〉闹睆酱怪逼椒只∷鶎Φ南?②平分弦的直徑平分弦所對的弧

 ?、鄞怪庇谙业闹本€必過圓心 ④垂直于弦的直徑平分弦所對的弧

  A.1 個(gè) B.2 個(gè) C.3 個(gè) D.4 個(gè)

  9.二次函數(shù) y  a(x  m)2  n 的圖象如圖,則一次函數(shù) y  mx  n 的圖象經(jīng)過( )

  A.第一、二、三象限 B.第一、二、四象限

  C.第二、三、四象限 D.第一、三、四象限

  第 9 題圖 第 10 題圖 第 11 題圖 第 12 題圖

  10.若干個(gè)正方形按如圖方式拼接,三角形 M 經(jīng)過旋轉(zhuǎn)變換能得到三角形 N ,下列四個(gè)點(diǎn)能作為旋轉(zhuǎn)中心的是( )

  A.點(diǎn) A B.點(diǎn) B C.點(diǎn) C D.點(diǎn) D

  11.如圖,CD 是⊙O 的弦,O 是圓心,把⊙O 的劣弧沿著 CD 對折,A 是對折后劣弧上的一點(diǎn),∠CAD=100°,則∠B 的度數(shù)是( )

  A.50° B.60° C.80° D.100°

  12.如圖,動(dòng)點(diǎn) A 在拋物線 y  x2  2x  30  x  3 上運(yùn)動(dòng),直線l 經(jīng)過點(diǎn)(0,6),且與 y 軸垂直,過點(diǎn) A 作 AC⊥l 于點(diǎn) C,以 AC 為對角線作矩形 ABCD,則另一對角線 BD 的取值范圍正確的是( )

  二、填空題(每小題 4 分,共 24 分)

  13.已知⊙O 的半徑為 5,若 P 到圓心 O 的距離是 4,則點(diǎn) P 與⊙O 的位置關(guān)系是 .

  14.盒子里有 3 支紅色筆芯,2 支黑色筆芯,每支筆芯除顏色外均相同.從中任意摸出一支筆芯,則摸出黑色筆芯的概率是 .

  15.已知點(diǎn)(-1,y1),(0,y2),(4,y3)都在拋物線 y  ax2  2ax  5(a  0) 上,則 y1,y2,y3

  的大小關(guān)系 .(用“<”連接)

  16.如圖,邊長相等的正五邊形和正六邊形拼接在一起,則∠ABC 的度數(shù)為 .

  第 16 題圖 第 18 題圖

  17.若拋物線 y  2x2  x  c 與坐標(biāo)軸有兩個(gè)交點(diǎn),則字母c 應(yīng)滿足的條件是 .

  18.如圖是小明制作的一副弓箭,點(diǎn) A,D 分別是弓臂 BAC 與弓弦 BC 的中點(diǎn),沿 AD 方向拉弓的過程中,假設(shè)弓臂 BAC 始終保持圓弧形,弓弦不伸長;當(dāng)弓箭從自然狀態(tài)的點(diǎn) D 拉到點(diǎn) D1 ,使其成為以 D1 為圓心的扇形 B1 AC1 , B1C1 垂直平分 AD1 , AD1  30 cm,則弓臂 BAC 的長度是 .

  三、解答題(第 19 題 6 分,第 20—21 題各 8 分,第 22—24 題各 10 分,第 25 題 12 分,第

  26 題 14 分,共 78 分)

  19.已知二次函數(shù)當(dāng) x=1 時(shí),y 有最大值為 5,且它的圖象經(jīng)過點(diǎn)(2,3),求這個(gè)函數(shù)的表達(dá)式.

  20.如圖在Rt△ABC 中,∠C=90°.

  (1)請用直尺和圓規(guī)在圖中畫出直角△ABC 的外接圓;(不寫作法,保留作圖痕跡)

  (2)若 AC=5,BC=12,請直接寫出該直角三角形的外接圓的面積.

  A

  21.某市今年中考理、化實(shí)驗(yàn)操作考試,采用學(xué)生抽簽方式?jīng)Q定自己的考試內(nèi)容.規(guī)定:每位考生必須在三個(gè)物理實(shí)驗(yàn)(用紙簽 A、B、C 表示)和三個(gè)化學(xué)實(shí)驗(yàn)(用紙簽 D、E、F 表示)中各抽取一個(gè)進(jìn)行考試.小剛在看不到紙簽的情況下,分別從中各隨機(jī)抽取一個(gè).

  (1)用“列表法”或“樹狀圖法”表示所有可能出現(xiàn)的結(jié)果;

  (2)求小剛抽到物理實(shí)驗(yàn) B 和化學(xué)實(shí)驗(yàn) F 的概率.

  22.如圖,點(diǎn) A,B,C,D 在⊙O 上,連結(jié) AB,CD,BD, 若 AB=CD. 求證:∠ABD=∠CDB.

  23.如圖,拋物線 y  ax2  c 與直線 y  3 相交于點(diǎn) A,B,與 y 相交于點(diǎn) C(0,-1),其中點(diǎn)

  A 的橫坐標(biāo)為-4.

  (1)計(jì)算 a,c 的值;

  (2)求出拋物線 y  ax2  c 與 x 軸的交點(diǎn)坐標(biāo);

  24.如圖,AB 為⊙O 的直徑,CD 是弦,AB⊥CD 于點(diǎn) E,OF⊥AC 于點(diǎn) F,BE=OF.

  (1)求證:△AFO≌△CEB;

  (2)若 BE=4, CD  8 3 ,求:

 ?、佟袿 的半徑;

  ②求圖中陰影部分的面積.

  25.為滿足市場需求,某超市購進(jìn)一種品牌糕點(diǎn),每盒進(jìn)價(jià)是 40 元.超市規(guī)定每盒售價(jià)不得

  少于 45 元.根據(jù)以往銷售經(jīng)驗(yàn)發(fā)現(xiàn),當(dāng)售價(jià)定為每盒 45 元時(shí),每天可以賣出 700 盒,

  每盒售價(jià)每提高 1 元,每天要少賣出 20 盒.

  (1)試求出每天的銷售量 y (盒)與每盒售價(jià) x (元)之間的函數(shù)關(guān)系式;

  (2)當(dāng)每盒售價(jià)定為多少元時(shí),每天銷售的利潤 P(元)最大?最大利潤是多少?

  (3)為穩(wěn)定物價(jià),有關(guān)管理部門限定:這種糕點(diǎn)的每盒售價(jià)不得高于 58 元.如果超市想

  要每天獲得不低于 6000 元的利潤,那么超市每天至少銷售糕點(diǎn)多少盒?

  26.定義:有一個(gè)角是其對角一半的圓的內(nèi)接四邊形叫做圓美四邊形,其中這個(gè)角叫做美角.

  (1)如圖 1,若四邊形 ABCD 是圓美四邊形,求美角∠A 的度數(shù).

  (2)在(1)的條件下,若⊙ O 的半徑為 5.

 ?、偾?BD 的長.

 ?、谌鐖D 2,在四邊形 ABCD 中,若 CA 平分∠BCD,則 BC+CD 的最大值是 .

  (3)在(1)的條件下,如圖 3,若 AC 是⊙O 的直徑,請用等式表示線段 AB,BC,CD 之間的數(shù)量關(guān)系,并說明理由.

  九年級數(shù)學(xué)上冊期中試題參考

  一、單選題(共 10 題,共 30 分)

  1.有五張背面完全相同的卡片,正面分別寫有數(shù)字 1,2,3,4,5,把這些卡片背面朝上洗勻后,從中隨機(jī)抽取一張,其正面的數(shù)字是偶數(shù)的概率為( )

  2.⊙O 以原點(diǎn)為圓心,5 為半徑,點(diǎn) P 的坐標(biāo)為(4,2),則點(diǎn) P 與⊙O 的位置關(guān)系是( ) A.點(diǎn) P 在⊙O 內(nèi) B.點(diǎn) P 在⊙O 上

  C.點(diǎn) P 在⊙O 外 D.點(diǎn) P 在⊙O 上或⊙O 外

  3.某小組做“用頻率估計(jì)概率”的試驗(yàn)時(shí),繪出的某一結(jié)果出現(xiàn)的頻率折線圖,則符合這一結(jié)果的試驗(yàn)可能是( )

  A.拋一枚硬幣,出現(xiàn)正面朝上

  B.擲一個(gè)正六面體的骰子,出現(xiàn) 3 點(diǎn)朝上

  C.一副去掉大小王的撲克牌洗勻后,從中任抽一張牌的花色是紅桃

  D.從一個(gè)裝有 2 個(gè)紅球 1 個(gè)黑球的袋子中任取一球, 取到的是黑球

  4.將拋物線 y  x2  2x  3 向上平移 2 個(gè)單位長度,再向右平移 3 個(gè)單位長度后,得到的

  拋物線的解析式為( ) A. y   x 12  4

  C. y   x  22  6

  B. y   x  42  4

  D. y   x  42  6

  5.如圖,若二次函數(shù) y=ax2+bx+c(a≠0)圖象的對稱軸為 x=1, 與 y 軸交于點(diǎn) C,與 x 軸交于點(diǎn) A、點(diǎn) B(﹣1,0),則

 ?、俣魏瘮?shù)的最大值為 a+b+c; ②a﹣b+c<0;

 ?、踒2﹣4ac<0; ④當(dāng) y>0 時(shí),﹣1

  A.1 B.2

  C.3 D.4

  6.如圖,⊙A 過點(diǎn) O(0,0),C( ,0),D(0,1),點(diǎn) B 是 x 軸下方⊙A 上的一點(diǎn),連接

  BO,BD,則∠OBD 的度數(shù)是( )

  A.15° B.30° C.45° D.60°

  7.如圖,已知四邊形 ABCD 內(nèi)接于⊙O,連結(jié) BD,∠BAD=105°,∠DBC=75°.若⊙O 的半徑為 3,則 BC 的長是( )

  A.  B.π C. 5 D. 3

  2 4 2

  8.如圖,△ ABC 中,∠C=Rt∠,AC=6,BC=8,以點(diǎn) C 為圓心,CA 為半徑的圓與 AB、BC

  分別交于點(diǎn) E、D,則 BE 的長為( )

  9.四位同學(xué)在研究函數(shù) y=x2+bx+c(b,c 是常數(shù))時(shí),甲發(fā)現(xiàn)當(dāng) x=1 時(shí),函數(shù)有最小值; 乙發(fā)現(xiàn)﹣1 是方程 x2+bx+c=0 的一個(gè)根;丙發(fā)現(xiàn)函數(shù)的最小值為 3;丁發(fā)現(xiàn)當(dāng) x=2 時(shí),

  y=4,已知這四位同學(xué)中只有一位發(fā)現(xiàn)的結(jié)論是錯(cuò)誤的,則該同學(xué)是( ) A.甲 B.乙 C.丙 D.丁

  10.如圖,在平面直角坐標(biāo)系中,將正方形 OABC 繞點(diǎn) O 逆時(shí)針旋轉(zhuǎn) 45°后得到正方形

  OA1B1C1,依此方式,繞點(diǎn) O 連續(xù)旋轉(zhuǎn) 2018 次得到正方形 OA2018B2018C2018,如果點(diǎn) A

  的坐標(biāo)為(1,0),那么點(diǎn) B2018 的坐標(biāo)為( )

  A.(1,1) B.(0, )

  C.(﹣1,1) D.( 

  2 ,0)

  二、填空題(共 6 題,共 24 分)

  11.如圖所示,有一電路 AB 是由圖示的開關(guān)控制,閉合 a,b,c,d,e 五個(gè)開關(guān)中的任意兩個(gè)開關(guān),使電路形成通路,則使電路形成通路的概率是 .

  12.飛機(jī)著陸后滑行的距離 y(單位:m)關(guān)于滑行時(shí)間 t(單位:s)的函數(shù)解析式是

  y  60t  3 t2 .在飛機(jī)著陸滑行中,最后 4 s 滑行的距離是 m.

  2

  13.如圖,AB 是⊙O 的直輕,點(diǎn) C 是半徑 OA 的中點(diǎn),過點(diǎn) C 作 DE⊥AB,交⊙O 于 D,E

  兩點(diǎn),過點(diǎn) D 作直徑 DF,連結(jié) AF,則∠DFA= .

  第 13 題圖 第 14 題圖

  14.如圖,在平行四邊形 ABCD 中,AB

  于點(diǎn) E,則陰影部分的面積為 .

  15.如圖,以 G(0,1)為圓心,半徑為 2 的圓與 x 軸交于 A、B 兩點(diǎn),與 y 軸交于 C,D 兩點(diǎn),點(diǎn) E 為⊙O 上一動(dòng)點(diǎn),CF⊥AE 于 F,則弦 AB 的長度為 ;點(diǎn) E 在運(yùn)動(dòng)過程中,線段 FG 的長度的最小值為 .

  第 15 題圖 第 16 題圖

  16.如圖,將拋物線 y1  2x 向右平移 2 個(gè)單位,得到拋物線 y2 的圖象.P 是拋物線 y2 對稱

  2

  軸上的一個(gè)動(dòng)點(diǎn),直線 x=t 平行于 y 軸,分別與直線 y=x、拋物線 y2 交于點(diǎn) A、B.若

  △ ABP 是以點(diǎn) A 或點(diǎn) B 為直角頂點(diǎn)的等腰直角三角形,請求出滿足條件的 t 的值,則

  t= .

  三、解答題(共 8 題,共 66 分)

  17.(6 分)如圖,在圓內(nèi)接四邊形 ABCD 中,O 為圓心,∠BOD=160°,求∠BCD 的度數(shù).

  18.(6 分)某同學(xué)報(bào)名參加校運(yùn)會(huì),有以下 5 個(gè)項(xiàng)目可供選擇: 徑賽項(xiàng)目:100 m,200 m,400 m(分別用 A1,A2,A3 表示); 田賽項(xiàng)目:跳遠(yuǎn),跳高(分別用 B1,B2 表示)

  (1)該同學(xué)從 5 個(gè)項(xiàng)目中任選一個(gè),恰好是田賽項(xiàng)目的概率是多少?

  (2)該同學(xué)從 5 個(gè)項(xiàng)目中任選兩個(gè),利用樹狀圖或表格列舉出所有可能出現(xiàn)的結(jié)果,并

  求出恰好是 1 個(gè)田賽項(xiàng)目和 1 個(gè)徑賽項(xiàng)目的概率.

  19.(6 分)已知:如圖,AB 為半圓 O 的直徑,C、D 是半圓 O 上的兩點(diǎn),若直徑 AB 的長為 4,且 BC=2,∠DAC=15°.

  (1)求∠DAB 的度數(shù);

  (2)求圖中陰影部分的面積(結(jié)果保留 π).

  20.(8 分)如圖,已知在以點(diǎn) O 為圓心的兩個(gè)同心圓中,大圓的弦 AB 交小圓于 C,D.

  (1)求證:AC=BD;

  (2)若大圓的半徑 R=10,小圓半徑 r=8,且圓心 O 到直線 AB 的距離為 6,求 AC 的長.

  21.(8 分)某商店銷售一款進(jìn)價(jià)為每件 40 元的護(hù)膚品,調(diào)查發(fā)現(xiàn),銷售單價(jià)不低于 40 元且不高于 80 元時(shí),該商品的日銷售量 y(件)與銷售單價(jià) x(元)之間存在一次函數(shù)關(guān)系,當(dāng)銷售單價(jià)為 44 元時(shí),日銷售量為 72 件;當(dāng)銷售單價(jià)為 48 元時(shí),日銷售量為 64 件.

  (1)求 y 與 x 之間的函數(shù)關(guān)系式;

  (2)設(shè)該護(hù)膚品的日銷售利潤為 w(元),當(dāng)銷售單價(jià) x 為多少時(shí),日銷售利潤 w 最大, 最大日銷售利潤是多少?

  22.(10 分)我們定義兩個(gè)不相交的函數(shù)圖象在豎直方向上的最短距離為這兩個(gè)函數(shù)的

  “和諧值”.

  (1)求拋物線 y=x2﹣2x+2 與 x 軸的“和諧值”;

  (2)求拋物線 y=x2﹣2x+2 與直線 y=x﹣1 的“和諧值”;

  (3)求拋物線 y=x2﹣2x+2 在拋物線 y  1 x2  c 的上方,且兩條拋物線的“和諧值”為

  2

  2,求 c 的值.

  23.(10 分)已知△ ABC 中,AB=AC,以 AB 為直徑的⊙O 交 BC 于點(diǎn) D,交 AC 于點(diǎn) E.

  (1)當(dāng)∠BAC 為銳角時(shí),如圖①,求證:∠CBE  1∠BAC ;

  2

  (2)當(dāng)∠BAC 為鈍角時(shí),如圖②,CA 的延長線與⊙O 相交于點(diǎn) E,(1)中的結(jié)論是否仍然成立?并說明理由.

  24.(12 分)對于二次函數(shù) y  x2  3x  2 和一次函數(shù) y  2x  4 ,把

  y  t x2  3x  2  1 t 2x  4 稱為這兩個(gè)函數(shù)的“再生二次函數(shù)”,其中 t 是不為

  零的實(shí)數(shù),其圖象記作拋物線 L.現(xiàn)有點(diǎn) A(2,0)和拋物線 L 上的點(diǎn) B(-1,n),請完成下列任務(wù):

  【嘗試】

  (1)當(dāng) t=2 時(shí),拋物線 y  t x2  3x  2  1 t 2x  4 的頂點(diǎn)坐標(biāo)為 ;

  (2)判斷點(diǎn) A 是否在拋物線 L 上;

  (3)求 n 的值.

  【發(fā)現(xiàn)】

  通過(2)和(3)的演算可知,對于 t 取任何不為零的實(shí)數(shù),拋物線 L 總過定點(diǎn),坐標(biāo)為

  .

  【應(yīng)用】

  二次函數(shù) y  3 x2 5 x  2 是二次函數(shù) y  x2  3x  2 和一次函數(shù) y  2x  4 的一個(gè)

  “再生二次函數(shù)”嗎?如果是,求出 t 的值;如果不是,說明理由.


九年級數(shù)學(xué)上冊期中試題卷相關(guān)文章:

1.初三數(shù)學(xué)上期末考試卷及答案

2.九年級上數(shù)學(xué)期末試題及答案

3.初三數(shù)學(xué)上期末試卷

4.九年級第一學(xué)期數(shù)學(xué)期末考試試卷分析

5.九年級物理上冊期中測試題

4151614