初三數(shù)學上冊知識點:中心對稱圖形
圖形的學習是數(shù)學里的重要內容。下面是學習啦小編收集整理的初三數(shù)學上冊《中心對稱圖形》的復習知識點以供大家學習。
初三數(shù)學上冊知識點:中心對稱圖形
5.1圓
1、定義:圓是到定點的距離等于定長的點的集合
2、點與圓的位置關系:
如果⊙O的半徑為r,點P到圓心O的距離為d,那么
點P在圓內,則dr;
點P在圓上,則dr;
點P在圓外,則dr;反之亦成立。
5.2圓的對稱性
一、圓是中心對稱圖形,圓心是它的對稱中心。
定理:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應的其余各組量都分別相等。
圓心角的度數(shù)與它所對的弧的度數(shù)相等。
二、圓是軸對稱圖形,過圓心的任意一條直線都是它的對稱軸。
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。
5.3圓周角
定義:頂點在圓上,并且兩邊都和圓相交的角叫做圓周角
定理:同弧或等弧所對的圓周角相等,都等于該弧所對的圓心角的一半。
定理:直徑(或半圓)所對的圓周角是直角。90º的圓周角所對的弦是直徑。
5.4確定圓的條件
結論:不在同一條直線上的三點確定一個圓
三角形的外接圓(三角形的外心):三角形的外心是三角形中3邊垂直平分線的交點,三角形的外心到三角形各頂點的距離相等。
注:直角三角形的外心是斜邊的中點,外接圓的半徑等于斜邊的一半。
5.5直線與圓的位置關系
一、三種位置關系:相交、相切、相離
如果⊙O的半徑為r,圓心O到直線l的距離為d,那么
直線l與⊙O相交,則dr;
直線l與⊙O相切,則dr;
直線l與⊙O相離,則dr;反之亦成立。
二、圓的切線的性質及判定
定理:經過半徑的外端并且垂直于這條半徑的直線是圓的切線
兩種方法:連半徑,證垂直;作垂直,證半徑
定理:圓的切線垂直于過切點的半徑
三角形的內切圓(三角形的內心):三角形的內心是三角形中3條角平分的交點,三角形的內心到三角形各邊的距離相等。
注:求三角形的內切圓的半徑通常用面積法,特殊地,直角三角形內切圓的半徑=abc(其中c為斜邊) 2
切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,這點和圓心的連線平分兩條切線的夾角。
5.6圓與圓的位置關系
五種位置關系:外離、外切、相交、內切、內含
閱讀材料:如果兩個圓相切,那么切點一定在連心線上相交兩圓的連心線垂直平分兩圓的公共弦。
5.7正多邊形與圓
各邊相等、各角也相等的多邊形叫做正多邊形。
正多邊形都是軸對稱圖形,一個正n邊形共有n條對稱軸,每條對稱軸都通過正n邊形的中心。一個正多邊形,如果有偶數(shù)條邊,那么它既是軸對稱圖形,又是中心對稱圖形。
注:與正多邊形有關的計算