9年級數(shù)學上期末試卷
心態(tài)平靜莫慌亂。發(fā)揮才智更努力,魚躍龍門終如愿。九年級數(shù)學期末考即將到來,望你在有限的時間內(nèi),朝著理想的目標前進,以下是學習啦小編為大家整理的9年級數(shù)學上期末試卷,希望你們喜歡。
9年級數(shù)學上期末試題
一、選擇題(本大題共6小題,每小題2分,共12分.在每小題所給出的四個選項中,恰有一項是符合題目要求的,請將正確選項前的字母代號填涂在答題卡相應位置上)
1.方程x(x+2)=0的解是( )
A.﹣2 B.0,﹣2 C.0,2 D.無實數(shù)根
2.兩個相似三角形的相似比是2:3,則這兩個三角形的面積比是( )
A. : B.2:3 C.2:5 D.4:9
3.如圖,在△ABC中,∠C=90°,AC=2,BC=1,則cosA的值是( )
A. B. C. D.
4.已知A(﹣1,y1),B(2,y2)是拋物線y=﹣(x+2)2+3上的兩點,則y1,y2的大小關系為( )
A.y1>y2 B.y1
5.如圖,小明為檢驗M、N、P、Q四點是否共圓,用尺規(guī)分別作了MN、MQ的垂直平分線交于點O,則M、N、P、Q四點中,不一定在以O為圓心,OM為半徑的圓上的點是( )
A.點M B.點N C.點P D.點Q
6.如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,O是△ABC的內(nèi)心,以O為圓心,r為半徑的圓與線段AB有交點,則r的取值范圍是( )
A.r≥1 B.1≤r≤ C.1≤r≤ D.1≤r≤4
二、填空題(本大題共10小題,每小題2分,共20分.不需寫出解答過程,請把答案直接填寫在答題卡相應位置上)
7.一組數(shù)據(jù)﹣2,﹣1,0,3,5的極差是 .
8.某車間生產(chǎn)的零件不合格的概率為 .如果每天從他們生產(chǎn)的零件中任取10個做試驗,那么在大量的重復試驗中,平均來說, 天會查出1個次品.
9.拋擲一枚質(zhì)地均勻的硬幣3次,3次拋擲的結果都是正面朝上的概率是 .
10.某校為了解全校1300名學生課外閱讀的情況,隨機調(diào)查了50名學生一周的課外閱讀時間,并繪制成如圖統(tǒng)計表.根據(jù)表中數(shù)據(jù),估計該校1300名學生一周的課外閱讀時間不少于7小時的人數(shù)為 人.
時間(小時) 4 5 6 7 8
人數(shù)(人) 3 9 18 15 5
11.如圖,PA、PB分別切⊙O于點A、B,若∠P=70°,則∠C的大小為 (度).
12.如圖,在正八邊形ABCDEFGH中,AC、GC是兩條對角線,則tan∠ACG= .
13.如圖,沿一條母線將圓錐側(cè)面剪開并展平,得到一個扇形,若圓錐的底面圓的半徑r=2cm,扇形的圓心角θ=120°,則該圓錐的母線長l為 cm.
14.如圖,小明做實驗時發(fā)現(xiàn),當三角板中30°角的頂點A在⊙O上移動,三角板的兩邊與⊙O相交于點P、Q時, 的長度不變.若⊙O的半徑為9,則 的長等于 .
15.如圖,四邊形ABCD內(nèi)接于⊙O,若⊙O的半徑為6,∠A=130°,則扇形OBAD的面積為 .
16.某數(shù)學興趣小組研究二次函數(shù)y=mx2﹣2mx+1(m≠0)的圖象時發(fā)現(xiàn):無論m如何變化,該圖象總經(jīng)過兩個定點(0,1)和( , ).
三、解答題(本大題共11小題,共88分.請在答題卡指定區(qū)域內(nèi)作答,解答時應寫出文字說明、證明過程或演算步驟)
17.(1)計算:sin45°﹣cos30°tan60°
(2)解方程:x2﹣4x﹣1=0.
18.如圖,利用標桿BE測量建筑物的高度,如果標桿BE長1.2m,測得AB=1.6m,BC=8.4m,樓高CD是多少?
19.趙州橋的主橋拱是圓弧形,它的跨度(弧所對的弦)長為37.4m,拱高(弧的中點到弦的距離)為7.2m,請求出趙州橋的主橋拱半徑(結果保留小數(shù)點后一位).
20.一次學科測驗,學生得分均為整數(shù),滿分10分,成績達到6分以上為合格.成績達到9分為優(yōu)秀.這次測驗中甲乙兩組學生成績分布的條形統(tǒng)計圖如下:
(1)請補充完成下面的成績統(tǒng)計分析表:
平均分 方差 中位數(shù) 合格率 優(yōu)秀率
甲組 6.9 2.4 91.7% 16.7%
乙組 1.3 83.3% 8.3%
(2)甲組學生說他們的合格率、優(yōu)秀率均高于乙組,所以他們的成績好于乙組.但乙組學生不同意甲組學生的說法,認為他們組的成績要高于甲組.請你給出三條支持乙組學生觀點的理由.
21.一個不透明的口袋中裝有4個完全相同的小球,分別標有數(shù)字1、2、3、4,另有一個可以自由旋轉(zhuǎn)的圓盤.被分成面積相等的3個扇形區(qū),分別標有數(shù)字1、2、3(如圖所示).小穎和小亮想通過游戲來決定誰代表學校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個小球,另一個人轉(zhuǎn)動圓盤,如果所摸球上的數(shù)字與圓盤上轉(zhuǎn)出數(shù)字之和小于4,那么小穎去;否則小亮去.
(1)用樹狀圖或列表法求出小穎參加比賽的概率;
(2)你認為該游戲公平嗎?請說明理由;若不公平,請修改該游戲規(guī)則,使游戲公平.
22.已知關于x的一元二次方程x2﹣x+m=0有兩個不相等的實數(shù)根.
(1)求實數(shù)m的取值范圍;
(2)若方程的兩個實數(shù)根為x1、x2,且x1+x2+x1•x2=m2﹣1,求實數(shù)m的值.
23.用40cm長的鐵絲圍成一個扇形,求此扇形面積的最大值.
24.如圖,一枚運載火箭從地面L處發(fā)射,當火箭到達A點時,從位于距發(fā)射架底部4km處的地面雷達站R(LR=4)測得火箭底部的仰角為43°.1s后,火箭到達B點,此時測得火箭底部的仰角為45.72°.這枚火箭從A到B的平均速度是多少 (結果取小數(shù)點后兩位)?
(參考數(shù)據(jù):sin43°≈0.682,cos43°≈0.731,tan43°≈0.933,
sin45.72°≈0.716,cos45.72°≈0.698,tan45.72°≈1.025)
25.如圖,要設計一本畫冊的封面,封面長40cm,寬30cm,正中央是一個與整個封面長寬比例相同的矩形畫.如果要使四周的邊襯所占面積是封面面積的 ,上、下邊襯等寬,左、右邊襯等寬,應如何設計四周邊襯的寬度(結果保留小數(shù)點后一位,參考數(shù)據(jù): ≈2.236).
26.如圖①,A、B、C、D四點共圓,過點C的切線CE∥BD,與AB的延長線交于點E.
(1)求證:∠BAC=∠CAD;
(2)如圖②,若AB為⊙O的直徑,AD=6,AB=10,求CE的長;
(3)在(2)的條件下,連接BC,求 的值.
27.如圖①,已知拋物線C1:y=a(x+1)2﹣4的頂點為C,與x軸相交于A、B兩點(點A在點B的左邊),點B的橫坐標是1.
(1)求點C的坐標及a 的值;
(2)如圖②,拋物線C2與C1關于x軸對稱,將拋物線C2向右平移4個單位,得到拋物線C3.C3與x軸交于點B、E,點P是直線CE上方拋物線C3上的一個動點,過點P作y軸的平行線,交CE于點F.
?、偾缶€段PF長的最大值;
?、谌鬚E=EF,求點P的坐標.
下一頁分享>>>9年級數(shù)學上期末試卷答案