不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高一學(xué)習(xí)方法>高一數(shù)學(xué)>

數(shù)學(xué)必修四已知三角函數(shù)值求角知識點

時間: 鳳婷983 分享

  在學(xué)習(xí)數(shù)學(xué)中,學(xué)生很害怕三角函數(shù)知識,尤其是已知三角函數(shù)值求角的問題一直都是數(shù)學(xué)的一個難點,下面是學(xué)習(xí)啦小編給大家?guī)淼臄?shù)學(xué)必修四已知三角函數(shù)值求角知識點,希望對你有幫助。

  數(shù)學(xué)已知三角函數(shù)值求角知識點(一)

  數(shù)學(xué)已知三角函數(shù)值求角知識點(二)

  反三角函數(shù)的定義:

  (1)反正弦:在閉區(qū)間

  上符合條件sinx=a(-1≤a≤1)的角x,叫做實數(shù)a的反正弦,記作arcsina,即x=arcsina,其中x∈

  ,且a=sinx;

  注意arcsina表示一個角,這個角的正弦值為a,且這個角在

  內(nèi)(-1≤a≤1)。

  (2)反余弦:在閉區(qū)間

  上,符合條件cosx=a(-1≤a≤1)的角x,叫做實數(shù)a的反余弦,記作arccosa,即x=arccosa,其中x∈[0,π],且a=cosx。

  (3)反正切:在開區(qū)間

  內(nèi),符合條件tanx=a(a為實數(shù))的角x,叫做實數(shù)a的反正切,記做arctana,即x=arctana,其中x∈

  ,且a=tanx。

  反三角函數(shù)的性質(zhì):

  (1)sin(arcsina)=a(-1≤a≤1),cos(arccosa)=a(-1≤a≤1),

  tan(arctana)=a;

  (2)arcsin(-a)=-arcsina,arccos(-a)=π-arccosa,arctan(-a)=-arctana;

  (3)arcsina+arccosa=

  ;

  (4)arcsin(sinx)=x,只有當(dāng)x在

  內(nèi)成立;同理arccos(cosx)=x只有當(dāng)x在閉區(qū)間[0,π]上成立。

  已知三角函數(shù)值求角的步驟:

  (1)由已知三角函數(shù)值的符號確定角的終邊所在的象限(或終邊在哪條坐標軸上);

  (2)若函數(shù)值為正數(shù),先求出對應(yīng)銳角α1,若函數(shù)值為負數(shù),先求出與其絕對值對應(yīng)的銳角α1;

  (3)根據(jù)角所在象限,由誘導(dǎo)公式得出0~2π間的角,如果適合條件的角在第二象限,則它是π-α1;如果適合條件的角在第三象限,則它是π+α1;在第四象限,則它是2π-α1;如果是-2π到0的角,在第四象限時為-α1,在第三象限為-π+α1,在第二象限為-π-α1;

  (4)如果要求適合條件的所有角,則利用終邊相同的角的表達式來寫出。

數(shù)學(xué)必修四已知三角函數(shù)值求角知識點

在學(xué)習(xí)數(shù)學(xué)中,學(xué)生很害怕三角函數(shù)知識,尤其是已知三角函數(shù)值求角的問題一直都是數(shù)學(xué)的一個難點,下面是學(xué)習(xí)啦小編給大家?guī)淼臄?shù)學(xué)必修四已知三角函數(shù)值求角知識點,希望對你有幫助。 數(shù)學(xué)已知三角函數(shù)值求角知識點(一) 數(shù)學(xué)已知三角
推薦度:
點擊下載文檔文檔為doc格式

精選文章

2414333