高一數(shù)學導數(shù)相關(guān)知識點集錦
高一數(shù)學導數(shù)相關(guān)知識點集錦
量的學習起于數(shù),一開始為熟悉的自然數(shù)及整數(shù)與被描述在算術(shù)內(nèi)的有理和無理數(shù),下面是學習啦小編給大家?guī)淼母咭粩?shù)學導數(shù)相關(guān)知識點集錦,希望對你有幫助。
高一數(shù)學導數(shù)的定義:
當自變量的增量Δx=x-x0,Δx→0時函數(shù)增量Δy=f(x)- f(x0)與自變量增量之比的極限存在且有限,就說函數(shù)f在x0點可導,稱之為f在x0點的導數(shù)(或變化率)。
函數(shù)y=f(x)在x0點的導數(shù)f'(x0)的幾何意義:表示函數(shù)曲線在P0[x0,f(x0)] 點的切線斜率(導數(shù)的幾何意義是該函數(shù)曲線在這一點上的切線斜率)。
一般地,我們得出用函數(shù)的導數(shù)來判斷函數(shù)的增減性(單調(diào)性)的法則:設(shè)y=f(x )在(a,b)內(nèi)可導。如果在(a,b)內(nèi),f'(x)>0,則f(x)在這個區(qū)間是單調(diào)增加的(該點切線斜率增大,函數(shù)曲線變得“陡峭”,呈上升狀)。如果在(a,b)內(nèi),f'(x)<0,則f(x)在這個區(qū)間是單調(diào)減小的。所以,當f'(x)=0時,y=f(x )有極大值或極小值,極大值中最大者是最大值,極小值中最小者是最小值
高一數(shù)學求導數(shù)的步驟:
求函數(shù)y=f(x)在x0處導數(shù)的步驟:
?、?求函數(shù)的增量Δy=f(x0+Δx)-f(x0) ② 求平均變化率 ③ 取極限,得導數(shù)。
高一數(shù)學導數(shù)公式:
?、?C'=0(C為常數(shù)函數(shù)); ② (x^n)'= nx^(n-1) (n∈Q*);熟記1/X的導數(shù) ③ (sinx)' = cosx; (cosx)' = - sinx; (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx•secx (cscx)'=-cotx•cscx (arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=-1/(1+x^2) (arcsecx)'=1/(|x|(x^2-1)^1/2) (arccscx)'=-1/(|x|(x^2-1)^1/2) ④ (sinhx)'=hcoshx (coshx)'=-hsinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=-1/(sinhx)^2=-(cschx)^2 (sechx)'=-tanhx•sechx (cschx)'=-cothx•cschx (arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2-1)^1/2 (artanhx)'=1/(x^2-1) (|x|<1) (arcothx)'=1/(x^2-1) (|x|>1) (arsechx)'=1/(x(1-x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2) ⑤ (e^x)' = e^x; (a^x)' = a^xlna (ln為自然對數(shù)) (Inx)' = 1/x(ln為自然對數(shù)) (logax)' =(xlna)^(-1),(a>0且a不等于1) (x^1/2)'=[2(x^1/2)]^(-1) (1/x)'=-x^(-2)
高一數(shù)學導數(shù)的應(yīng)用:
1。函數(shù)的單調(diào)性
(1)利用導數(shù)的符號判斷函數(shù)的增減性 利用導數(shù)的符號判斷函數(shù)的增減性,這是導數(shù)幾何意義在研究曲線變化規(guī)律時的一個應(yīng)用,它充分體現(xiàn)了數(shù)形結(jié)合的思想。 一般地,在某個區(qū)間(a,b)內(nèi),如果f'(x)>0,那么函數(shù)y=f(x)在這個區(qū)間內(nèi)單調(diào)遞增;如果f'(x)<0,那么函數(shù)y=f(x)在這個區(qū)間內(nèi)單調(diào)遞減。 如果在某個區(qū)間內(nèi)恒有f'(x)=0,則f(x)是常數(shù)函數(shù)。 注意:在某個區(qū)間內(nèi),f'(x)>0是f(x)在此區(qū)間上為增函數(shù)的充分條件,而不是必要條件,如f(x)=x3在R內(nèi)是增函數(shù),但x=0時f'(x)=0。也就是說,如果已知f(x)為增函數(shù),解題時就必須寫f'(x)≥0。 (2)求函數(shù)單調(diào)區(qū)間的步驟(不要按圖索驥 緣木求魚 這樣創(chuàng)新何言?1。定義最基礎(chǔ)求法2。復合函數(shù)單調(diào)性) ①確定f(x)的定義域; ②求導數(shù); ③由(或)解出相應(yīng)的x的范圍。當f'(x)>0時,f(x)在相應(yīng)區(qū)間上是增函數(shù);當f'(x)<0時,f(x)在相應(yīng)區(qū)間上是減函數(shù)。
2。函數(shù)的極值
(1)函數(shù)的極值的判定 ①如果在兩側(cè)符號相同,則不是f(x)的極值點; ②如果在附近的左右側(cè)符號不同,那么,是極大值或極小值。
3。求函數(shù)極值的步驟
?、俅_定函數(shù)的定義域; ②求導數(shù); ③在定義域內(nèi)求出所有的駐點與導數(shù)不存在的點,即求方程及的所有實根; ④檢查在駐點左右的符號,如果左正右負,那么f(x)在這個根處取得極大值;如果左負右正,那么f(x)在這個根處取得極小值。
4。函數(shù)的最值
(1)如果f(x)在[a,b]上的最大值(或最小值)是在(a,b)內(nèi)一點處取得的,顯然這個最大值(或最小值)同時是個極大值(或極小值),它是f(x)在(a,b)內(nèi)所有的極大值(或極小值)中最大的(或最小的),但是最值也可能在[a,b]的端點a或b處取得,極值與最值是兩個不同的概念。 (2)求f(x)在[a,b]上的最大值與最小值的步驟 ①求f(x)在(a,b)內(nèi)的極值; ②將f(x)的各極值與f(a),f(b)比較,其中最大的一個是最大值,最小的一個是最小值。
5。生活中的優(yōu)化問題
生活中經(jīng)常遇到求利潤最大、用料最省、效率最高等問題,這些問題稱為優(yōu)化問題,優(yōu)化問題也稱為最值問題。解決這些問題具有非?,F(xiàn)實的意義。這些問題通??梢赞D(zhuǎn)化為數(shù)學中的函數(shù)問題,進而轉(zhuǎn)化為求函數(shù)的最大(小)值問題。